Switch to: Citations

Add references

You must login to add references.
  1. Is There an Empirical Disagreement between Genic and Genotypic Selection Models? A Response to Brandon and Nijhout.Naftali Weinberger - 2011 - Philosophy of Science 78 (2):225-237.
    In a recent paper, Brandon and Nijhout argue against genic selectionism—the thesis, roughly, that evolutionary processes are best understood from the gene’s-eye point of view—by presenting a case in which genic models of selection allegedly make predictions that conflict with the (correct) predictions of higher-level genotypic selection models. Their argument, if successful, would refute the widely held belief that genic models and higher-level models are predictively equivalent. Here, I argue that Brandon and Nijhout fail to demonstrate that the models make (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   188 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Not a sure thing: Fitness, probability, and causation.Denis M. Walsh - 2010 - Philosophy of Science 77 (2):147-171.
    In evolutionary biology changes in population structure are explained by citing trait fitness distribution. I distinguish three interpretations of fitness explanations—the Two‐Factor Model, the Single‐Factor Model, and the Statistical Interpretation—and argue for the last of these. These interpretations differ in their degrees of causal commitment. The first two hold that trait fitness distribution causes population change. Trait fitness explanations, according to these interpretations, are causal explanations. The last maintains that trait fitness distribution correlates with population change but does not cause (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Forces and Causes in Evolutionary Theory.Christopher Stephens - 2010 - Philosophy of Science 77 (5):716-727.
    The traditional view of evolutionary theory asserts that we can usefully understand natural selection, drift, mutation, migration, and the system of mating as forces that cause evolutionary change. Recently, Denis Walsh and Robert Brandon have objected to this view. Walsh argues that the traditional view faces a fatal dilemma and that the force analogy must be rejected altogether. Brandon accepts the force analogy but argues that drift, rather than the Hardy-Weinberg law, is the best candidate for a zero-force law. Here (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Block Fitness.Grant Ramsey - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (3):484-498.
    There are three related criteria that a concept of fitness should be able to meet: it should render the principle of natural selection non-tautologous and it should be explanatory and predictive. I argue that for fitness to be able to fulfill these criteria, it cannot be a property that changes over the course of an individual's life. Rather, I introduce a fitness concept--Block Fitness--and argue that an individual's genes and environment fix its fitness in such a way that each individual's (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Why the Causal View of Fitness Survives.Jun Otsuka, Trin Turner, Colin Allen & Elisabeth A. Lloyd - 2011 - Philosophy of Science 78 (2):209-224.
    We critically examine Denis Walsh’s latest attack on the causalist view of fitness. Relying on Judea Pearl’s Sure-Thing Principle and geneticist John Gillespie’s model for fitness, Walsh has argued that the causal interpretation of fitness results in a reductio. We show that his conclusion only follows from misuse of the models, that is, (1) the disregard of the real biological bearing of the population-size parameter in Gillespie’s model and (2) the confusion of the distinction between ordinary probability and Pearl’s causal (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Walsh on causes and evolution.Robert Northcott - 2010 - Philosophy of Science 77 (3):457-467.
    Denis Walsh has written a striking new defense in this journal of the statisticalist (i.e., noncausalist) position regarding the forces of evolution. I defend the causalist view against his new objections. I argue that the heart of the issue lies in the nature of nonadditive causation. Detailed consideration of that turns out to defuse Walsh’s ‘description‐dependence’ critique of causalism. Nevertheless, the critique does suggest a basis for reconciliation between the two competing views. *Received December 2009; revised December 2009. †To contact (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The propensity interpretation of fitness.Susan K. Mills & John H. Beatty - 1979 - Philosophy of Science 46 (2):263-286.
    The concept of "fitness" is a notion of central importance to evolutionary theory. Yet the interpretation of this concept and its role in explanations of evolutionary phenomena have remained obscure. We provide a propensity interpretation of fitness, which we argue captures the intended reference of this term as it is used by evolutionary theorists. Using the propensity interpretation of fitness, we provide a Hempelian reconstruction of explanations of evolutionary phenomena, and we show why charges of circularity which have been levelled (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Selection and causation.Mohan Matthen & André Ariew - 2009 - Philosophy of Science 76 (2):201-224.
    We have argued elsewhere that: (A) Natural selection is not a cause of evolution. (B) A resolution-of-forces (or vector addition) model does not provide us with a proper understanding of how natural selection combines with other evolutionary influences. These propositions have come in for criticism recently, and here we clarify and defend them. We do so within the broad framework of our own “hierarchical realization model” of how evolutionary influences combine.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Drift and “Statistically Abstractive Explanation”.Mohan Matthen - 2009 - Philosophy of Science 76 (4):464-487.
    A hitherto neglected form of explanation is explored, especially its role in population genetics. “Statistically abstractive explanation” (SA explanation) mandates the suppression of factors probabilistically relevant to an explanandum when these factors are extraneous to the theoretical project being pursued. When these factors are suppressed, the explanandum is rendered uncertain. But this uncertainty traces to the theoretically constrained character of SA explanation, not to any real indeterminacy. Random genetic drift is an artifact of such uncertainty, and it is therefore wrong (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The natures of selection.Tim Lewens - 2010 - British Journal for the Philosophy of Science 61 (2):313-333.
    Elliott Sober and his defenders think of selection, drift, mutation, and migration as distinct evolutionary forces. This paper exposes an ambiguity in Sober's account of the force of selection: sometimes he appears to equate the force of selection with variation in fitness, sometimes with ‘selection for properties’. Sober's own account of fitness as a property analogous to life-expectancy shows how the two conceptions come apart. Cases where there is selection against variance in offspring number also show that selection and drift (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Causality: Models, Reasoning and Inference.Christopher Hitchcock & Judea Pearl - 2001 - Philosophical Review 110 (4):639.
    Judea Pearl has been at the forefront of research in the burgeoning field of causal modeling, and Causality is the culmination of his work over the last dozen or so years. For philosophers of science with a serious interest in causal modeling, Causality is simply mandatory reading. Chapter 2, in particular, addresses many of the issues familiar from works such as Causation, Prediction and Search by Peter Spirtes, Clark Glymour, and Richard Scheines. But philosophers with a more general interest in (...)
    Download  
     
    Export citation  
     
    Bookmark   387 citations  
  • The Empirical Nonequivalence of Genic and Genotypic Models of Selection: A (Decisive) Refutation of Genic Selectionism and Pluralistic Genic Selectionism.Robert N. Brandon & H. Frederik Nijhout - 2006 - Philosophy of Science 73 (3):277-297.
    Genic selectionists (Williams 1966; Dawkins 1976) defend the view that genes are the (unique) units of selection and that all evolutionary events can be adequately represented at the genic level. Pluralistic genic selectionists (Sterelny and Kitcher 1988; Waters 1991; Dawkins 1982) defend the weaker view that in many cases there are multiple equally adequate accounts of evolutionary events, but that always among the set of equally adequate representations will be one at the genic level. We describe a range of cases (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Adaptation and Evolutionary Theory.Robert N. Brandon - 1978 - Studies in History and Philosophy of Science Part A 9 (3):181.
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • What Fitness Can’t Be.André Ariew & Zachary Ernst - 2009 - Erkenntnis 71 (3):289-301.
    Recently advocates of the propensity interpretation of fitness have turned critics. To accommodate examples from the population genetics literature they conclude that fitness is better defined broadly as a family of propensities rather than the propensity to contribute descendants to some future generation. We argue that the propensity theorists have misunderstood the deeper ramifications of the examples they cite. These examples demonstrate why there are factors outside of propensities that determine fitness. We go on to argue for the more general (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The unity of fitness.Marshall Abrams - 2009 - Philosophy of Science 76 (5):750-761.
    It has been argued that biological fitness cannot be defined as expected number of offspring in all contexts. Some authors argue that fitness therefore merely satisfies a common schema or that no unified mathematical characterization of fitness is possible. I argue that comparative fitness must be relativized to an evolutionary effect; thus relativized, fitness can be given a unitary mathematical characterization in terms of probabilities of producing offspring and other effects. Such fitnesses will sometimes be defined in terms of probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Two ways of thinking about fitness and natural selection.Mohan Matthen & André Ariew - 2002 - Journal of Philosophy 99 (2):55-83.
    How do fitness and natural selection relate to other evolutionary factors like architectural constraint, mode of reproduction, and drift? In one way of thinking, drawn from Newtonian dynamics, fitness is one force driving evolutionary change and added to other factors. In another, drawn from statistical thermodynamics, it is a statistical trend that manifests itself in natural selection histories. It is argued that the first model is incoherent, the second appropriate; a hierarchical realization model is proposed as a basis for a (...)
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • The Nature of Selection: Evolutionary Theory in Philosophical Focus.Elliott Sober - 1987 - British Journal for the Philosophy of Science 38 (3):397-399.
    Download  
     
    Export citation  
     
    Bookmark   273 citations