Switch to: Citations

Add references

You must login to add references.
  1. On the Notions of Specification and Implementation.Antony Galton - 1993 - Royal Institute of Philosophy Supplement 34:111-136.
    In this paper we consider two key concepts from software engineering—‘specification’ and ‘implementation’—and explore their possible applications outside software engineering to other disciplines, notably the philosophy of action, evolutionary biology, and cognitive science. Throughout, the emphasis is on the gain in conceptual clarity that can be afforded by these concepts; it is not so much a matter of new knowledge or new theories but of a reorganization of existing knowledge and theories in a way that facilitates the transfer of insights (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Functional analysis.Robert E. Cummins - 1975 - Journal of Philosophy 72 (November):741-64.
    Download  
     
    Export citation  
     
    Bookmark   865 citations  
  • (2 other versions)Weak emergence.Mark A. Bedau - 1997 - Philosophical Perspectives 11:375-399.
    An innocent form of emergence—what I call "weak emergence"—is now a commonplace in a thriving interdisciplinary nexus of scientific activity—sometimes called the "sciences of complexity"—that include connectionist modelling, non-linear dynamics (popularly known as "chaos" theory), and artificial life.1 After defining it, illustrating it in two contexts, and reviewing the available evidence, I conclude that the scientific and philosophical prospects for weak emergence are bright.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • (2 other versions)Weak Emergence.Mark A. Bedau - 1997 - Noûs 31 (S11):375-399.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Minimal Model Explanations.Robert W. Batterman & Collin C. Rice - 2014 - Philosophy of Science 81 (3):349-376.
    This article discusses minimal model explanations, which we argue are distinct from various causal, mechanical, difference-making, and so on, strategies prominent in the philosophical literature. We contend that what accounts for the explanatory power of these models is not that they have certain features in common with real systems. Rather, the models are explanatory because of a story about why a class of systems will all display the same large-scale behavior because the details that distinguish them are irrelevant. This story (...)
    Download  
     
    Export citation  
     
    Bookmark   178 citations  
  • The topological realization.Daniel Kostić - 2018 - Synthese (1).
    In this paper, I argue that the newly developed network approach in neuroscience and biology provides a basis for formulating a unique type of realization, which I call topological realization. Some of its features and its relation to one of the dominant paradigms of realization and explanation in sciences, i.e. the mechanistic one, are already being discussed in the literature. But the detailed features of topological realization, its explanatory power and its relation to another prominent view of realization, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Diversifying the picture of explanations in biological sciences: ways of combining topology with mechanisms.Philippe Huneman - 2018 - Synthese 195 (1):115-146.
    Besides mechanistic explanations of phenomena, which have been seriously investigated in the last decade, biology and ecology also include explanations that pinpoint specific mathematical properties as explanatory of the explanandum under focus. Among these structural explanations, one finds topological explanations, and recent science pervasively relies on them. This reliance is especially due to the necessity to model large sets of data with no practical possibility to track the proper activities of all the numerous entities. The paper first defines topological explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Topological explanations and robustness in biological sciences.Philippe Huneman - 2010 - Synthese 177 (2):213-245.
    This paper argues that besides mechanistic explanations, there is a kind of explanation that relies upon “topological” properties of systems in order to derive the explanandum as a consequence, and which does not consider mechanisms or causal processes. I first investigate topological explanations in the case of ecological research on the stability of ecosystems. Then I contrast them with mechanistic explanations, thereby distinguishing the kind of realization they involve from the realization relations entailed by mechanistic explanations, and explain how both (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1351 citations  
  • Outlines of a theory of structural explanations.Philippe Huneman - 2018 - Philosophical Studies 175 (3):665-702.
    This paper argues that in some explanations mathematics are playing an explanatory rather than a representational role, and that this feature unifies many types of non-causal or non-mechanistic explanations that some philosophers of science have been recently exploring under various names. After showing how mathematics can play either a representational or an explanatory role by considering two alternative explanations of a same biological pattern—“Bergmann’s rule”—I offer an example of an explanation where the bulk of the explanatory job is done by (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • What Makes a Scientific Explanation Distinctively Mathematical?Marc Lange - 2013 - British Journal for the Philosophy of Science 64 (3):485-511.
    Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are non-causal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • Abstraction and the Organization of Mechanisms.Arnon Levy & William Bechtel - 2013 - Philosophy of Science 80 (2):241-261.
    Proponents of mechanistic explanation all acknowledge the importance of organization. But they have also tended to emphasize specificity with respect to parts and operations in mechanisms. We argue that in understanding one important mode of organization—patterns of causal connectivity—a successful explanatory strategy abstracts from the specifics of the mechanism and invokes tools such as those of graph theory to explain how mechanisms with a particular mode of connectivity will behave. We discuss the connection between organization, abstraction, and mechanistic explanation and (...)
    Download  
     
    Export citation  
     
    Bookmark   152 citations