Switch to: References

Add citations

You must login to add citations.
  1. It's a Matter of Principle: Scientific Explanation in Information‐Theoretic Reconstructions of Quantum Theory.Laura Felline - 2016 - Dialectica 70 (4):549-575.
    The aim of this paper is to explore the ways in which Axiomatic Reconstructions of Quantum Theory in terms of Information-Theoretic principles can contribute to explaining and understanding quantum phenomena, as well as to study their explanatory limitations. This is achieved in part by offering an account of the kind of explanation that axiomatic reconstructions of Quantum Theory provide, and re-evaluating the epistemic status of the program in light of this explanation. As illustrative case studies, I take Clifton's, Bub's and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What Would Hume Say? Regularities, Laws, and Mechanisms.Holly Andersen - 2017 - In Phyllis Ilari & Stuart Glennan (eds.), What Would Hume Say? Regularities, Laws, and Mechanisms. pp. 157-168.
    This chapter examines the relationship between laws and mechanisms as approaches to characterising generalizations and explanations in science. I give an overview of recent historical discussions where laws failed to satisfy stringent logical criteria, opening the way for mechanisms to be investigated as a way to explain regularities in nature. This followed by a critical discussion of contemporary debates about the role of laws versus mechanisms in describing versus explaining regularities. I conclude by offering new arguments for two roles for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bohr’s Relational Holism and the classical-quantum Interaction.Mauro Dorato - 2016
    In this paper I present and critically discuss the main strategies that Bohr used and could have used to fend off the charge that his interpretation does not provide a clear-cut distinction between the classical and the quantum domain. In particular, in the first part of the paper I reassess the main arguments used by Bohr to advocate the indispensability of a classical framework to refer to quantum phenomena. In this respect, by using a distinction coming from an apparently unrelated (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Is There A Monist Theory of Causal and Non-Causal Explanations? The Counterfactual Theory of Scientific Explanation.Alexander Reutlinger - 2016 - Philosophy of Science 83 (5):733-745.
    The goal of this paper is to develop a counterfactual theory of explanation. The CTE provides a monist framework for causal and non-causal explanations, according to which both causal and non-causal explanations are explanatory by virtue of revealing counterfactual dependencies between the explanandum and the explanans. I argue that the CTE is applicable to two paradigmatic examples of non-causal explanations: Euler’s explanation and renormalization group explanations of universality.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Complements, not competitors: causal and mathematical explanations.Holly Andersen - 2017 - British Journal for the Philosophy of Science 69 (2):485-508.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the Lotka-Volterra equations. There (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)On Explanations from Geometry of Motion.Juha Saatsi - 2018 - British Journal for the Philosophy of Science 69 (1):253–273.
    This paper examines explanations that turn on non-local geometrical facts about the space of possible configurations a system can occupy. I argue that it makes sense to contrast such explanations from "geometry of motion" with causal explanations. I also explore how my analysis of these explanations cuts across the distinction between kinematics and dynamics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Depth and Explanation in Mathematics.Marc Lange - 2015 - Philosophia Mathematica 23 (2):196-214.
    This paper argues that in at least some cases, one proof of a given theorem is deeper than another by virtue of supplying a deeper explanation of the theorem — that is, a deeper account of why the theorem holds. There are cases of scientific depth that also involve a common abstract structure explaining a similarity between two otherwise unrelated phenomena, making their similarity no coincidence and purchasing depth by answering why questions that separate, dissimilar explanations of the two phenomena (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Dynamical versus structural explanations in scientific revolutions.Mauro Dorato - 2017 - Synthese 194 (7):2307-2327.
    By briefly reviewing three well-known scientific revolutions in fundamental physics (the discovery of inertia, of special relativity and of general relativity), I claim that problems that were supposed to be crying for a dynamical explanation in the old paradigm ended up receiving a structural explanation in the new one. This claim is meant to give more substance to Kuhn’s view that revolutions are accompanied by a shift in what needs to be explained, while suggesting at the same time the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Causal, A Priori True, and Explanatory: A Reply to Lange and Rosenberg.Mehmet Elgin & Elliott Sober - 2015 - Australasian Journal of Philosophy 93 (1):167-171.
    Sober [2011] argues that some causal statements are a priori true and that a priori causal truths are central to explanations in the theory of natural selection. Lange and Rosenberg [2011] criticize Sober's argument. They concede that there are a priori causal truths, but maintain that those truths are only ‘minimally causal’. They also argue that explanations that are built around a priori causal truths are not causal explanations, properly speaking. Here we criticize both of Lange and Rosenberg's claims.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences.P.-A. Braillard and C. Malaterre (ed.) - 2015 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explanation versus Understanding: On Two Roles of Dynamical Systems Theory in Extended Cognition Research.Katarzyna Kuś & Krzysztof Wójtowicz - forthcoming - Foundations of Science:1-26.
    It is widely believed that mathematics carries a substantial part of the explanatory burden in science. However, mathematics can also play important heuristic roles of a different kind, being a source of new ideas and approaches, allowing us to build toy models, enhancing expressive power and providing fruitful conceptualizations. In this paper, we focus on the application of dynamical systems theory (DST) within the extended cognition (EC) field of cognitive science, considering this case study to be a good illustration of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Explanation, Representation and Information.Panagiotis Karadimas - 2024 - Philosophical Problems in Science 74:21-55.
    The ontic conception of explanation is predicated on the proposition that “explanation is a relation between real objects in the world” and hence, according to this approach, scientific explanation cannot take place absent such a premise. Despite the fact that critics have emphasized several drawbacks of the ontic conception, as for example its inability to address the so-called “abstract explanations”, the debate is not settled and the ontic view can claim to capture cases of explanation that are non-abstract, such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by appealing to what the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A Commentary on Robin Hendry’s Views on Molecular Structure, Emergence and Chemical Bonding.Eric Scerri - 2023 - In João L. Cordovil, Gil Santos & Davide Vecchi (eds.), New Mechanism Explanation, Emergence and Reduction. Springer. pp. 161 - 177.
    In this article I examine several related views expressed by Robin Hendry concerning molecular structure, emergence and chemical bonding. There is a long-standing problem in the philosophy of chemistry arising from the fact that molecular structure cannot be strictly derived from quantum mechanics. Two or more compounds which share a molecular formula, but which differ with respect to their structures, have identical Hamiltonian operators within the quantum mechanical formalism. As a consequence, the properties of all such isomers yield precisely the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Explanatory Role of Machine Learning in Molecular Biology.Fridolin Gross - forthcoming - Erkenntnis:1-21.
    The philosophical debate around the impact of machine learning in science is often framed in terms of a choice between AI and classical methods as mutually exclusive alternatives involving difficult epistemological trade-offs. A common worry regarding machine learning methods specifically is that they lead to opaque models that make predictions but do not lead to explanation or understanding. Focusing on the field of molecular biology, I argue that in practice machine learning is often used with explanatory aims. More specifically, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Causation in Science, by Yemima Ben-Menahem.Matt Farr - 2021 - Mind 132 (528):1176-1185.
    Whatever you think of Bertrand Russell’s famous claim that the ‘law of causality’ is (at least as of 1912) redundant in the ‘advanced sciences’, it is nonethele.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining individual differences.Zina B. Ward - 2023 - Studies in History and Philosophy of Science Part A 101 (C):61-70.
    Most psychological research aims to uncover generalizations about the mind that hold across subjects. Philosophical discussions of scientific explanation have focused on such generalizations, but in doing so, have often overlooked an important phenomenon: variation. Variation is ubiquitous in psychology and many other domains, and an important target of explanation in its own right. Here I characterize explananda that concern individual differences and formulate an account of what it takes to explain them. I argue that the notion of actual difference (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Running Causation Aground.Holly Andersen - 2023 - The Monist 106 (3):255-269.
    The reduction of grounding to causation, or each to a more general relation of which they are species, has sometimes been justified by the impressive inferential capacity of structural equation modelling, causal Bayes nets, and interventionist causal modelling. Many criticisms of this assimilation focus on how causation is inadequate for grounding. Here, I examine the other direction: how treating grounding in the image of causation makes the resulting view worse for causation. The distinctive features of causal modelling that make this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural explanations: impossibilities vs failures.Manuel Barrantes - 2023 - Synthese 201 (4):1-15.
    The bridges of Königsberg case has been widely cited in recent philosophical discussions on scientific explanation as a potential example of a structural explanation of a physical phenomenon. However, when discussing this case, different authors have focused on two different versions, depending on what they take the explanandum to be. In one version, the explanandum is the _failure_ of a given individual in performing an Eulerian walk over the bridge system. In the other version, the explanandum is the _impossibility_ of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reciprocal causation and biological practice.Caleb Hazelwood - 2023 - Biology and Philosophy 38 (1):1-23.
    Arguments for an extended evolutionary synthesis often center on the concept of “reciprocal causation.” Proponents argue that reciprocal causation is superior to standard models of evolutionary causation for at least two reasons. First, it leads to better scientific models with more predictive power. Second, it more accurately represents the causal structure of the biological world. Simply put, proponents of an extended evolutionary synthesis argue that reciprocal causation is empirically and explanatorily apt relative to competing causal frameworks. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Expressivism about explanatory relevance.Josh Hunt - 2024 - Philosophical Studies 181 (9):2063-2089.
    Accounts of scientific explanation disagree about what’s required for a cause, law, or other fact to be a reason why an event occurs. In short, they disagree about the conditions for explanatory relevance. Nonetheless, most accounts presuppose that claims about explanatory relevance play a descriptive role in tracking reality. By rejecting the need for this descriptivist assumption, I develop an expressivist account of explanatory relevance and explanation: to judge that an answer is explanatory is to express an attitude of _being (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Idealization, representation, and explanation in the sciences.Melissa Jacquart, Elay Shech & Martin Zach - 2023 - Studies in History and Philosophy of Science Part A 99 (C):10-14.
    A central goal of the scientific endeavor is to explain phenomena. Scientists often attempt to explain a phenomenon by way of representing it in some manner—such as with mathematical equations, models, or theory—which allows for an explanation of the phenomenon under investigation. However, in developing scientific representations, scientists typically deploy simplifications and idealizations. As a result, scientific representations provide only partial, and often distorted, accounts of the phenomenon in question. Philosophers of science have analyzed the nature and function of how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bipedal Gait Costs: a new case study of mathematical explanation in science.Alan Baker - 2021 - European Journal for Philosophy of Science 11 (3):1-22.
    In this paper I present a case study of mathematical explanation in science that is new to the philosophical literature, and that arises in the context of estimating the energetic costs of running in bipedal animals. I refer to this as the Bipedal Gait Costs explanation. I argue that it is important for examples of applied mathematics to be driven not just by philosophical and mathematical concerns but also by scientific concerns. After a detailed presentation of the BGC case study, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Counter Countermathematical Explanations.Atoosa Kasirzadeh - 2021 - Erkenntnis 88 (6):2537-2560.
    Recently, there have been several attempts to generalize the counterfactual theory of causal explanations to mathematical explanations. The central idea of these attempts is to use conditionals whose antecedents express a mathematical impossibility. Such countermathematical conditionals are plugged into the explanatory scheme of the counterfactual theory and—so is the hope—capture mathematical explanations. Here, I dash the hope that countermathematical explanations simply parallel counterfactual explanations. In particular, I show that explanations based on countermathematicals are susceptible to three problems counterfactual explanations do (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reasons explanations (of actions) as structural explanations.Megan Fritts - 2021 - Synthese 199 (5-6):12683-12704.
    Non-causal accounts of action explanation have long been criticized for lacking a positive thesis, relying primarily on negative arguments to undercut the standard Causal Theory of Action The Stanford Encyclopedia of Philosophy, 2016). Additionally, it is commonly thought that non-causal accounts fail to provide an answer to Donald Davidson’s challenge for theories of reasons explanations of actions. According to Davidson’s challenge, a plausible non-causal account of reasons explanations must provide a way of connecting an agent’s reasons, not only to what (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why Platonists (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Directionality of Topological Explanations.Daniel Kostić & Kareem Khalifa - 2021 - Synthese (5-6):14143-14165.
    Proponents of ontic conceptions of explanation require all explanations to be backed by causal, constitutive, or similar relations. Among their justifications is that only ontic conceptions can do justice to the ‘directionality’ of explanation, i.e., the requirement that if X explains Y , then not-Y does not explain not-X . Using topological explanations as an illustration, we argue that non-ontic conceptions of explanation have ample resources for securing the directionality of explanations. The different ways in which neuroscientists rely on multiplexes (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Throwing spatial light: on topological explanations in Gestalt psychology.Bartłomiej Skowron & Krzysztof Wójtowicz - 2020 - Phenomenology and the Cognitive Sciences 20 (3):537-558.
    It is a well-known fact that mathematics plays a crucial role in physics; in fact, it is virtually impossible to imagine contemporary physics without it. But it is questionable whether mathematical concepts could ever play such a role in psychology or philosophy. In this paper, we set out to examine a rather unobvious example of the application of topology, in the form of the theory of persons proposed by Kurt Lewin in his Principles of Topological Psychology. Our aim is to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The selectionist rationale for evolutionary progress.Hugh Desmond - 2021 - Biology and Philosophy 36 (3):1-26.
    The dominant view today on evolutionary progress is that it has been thoroughly debunked. Even value-neutral progress concepts are seen to lack important theoretical underpinnings: natural selection provides no rationale for progress, and natural selection need not even be invoked to explain large-scale evolutionary trends. In this paper I challenge this view by analysing how natural selection acts in heterogeneous environments. This not only undermines key debunking arguments, but also provides a selectionist rationale for a pattern of “evolutionary unfolding”, where (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • There Are No Mathematical Explanations.Jaakko Kuorikoski - 2021 - Philosophy of Science 88 (2):189-212.
    If ontic dependence is the basis of explanation, there cannot be mathematical explanations. Accounting for the explanatory dependency between mathematical properties and empirical phenomena poses i...
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mechanistic Explanation in Psychology.Mark Povich - forthcoming - In Hank Stam & Huib Looren De Jong (eds.), The SAGE Handbook of Theoretical Psychology. (Eds.) Hank Stam and Huib Looren de Jong. Sage.
    Philosophers of psychology debate, among other things, which psychological models, if any, are (or provide) mechanistic explanations. This should seem a little strange given that there is rough consensus on the following two claims: 1) a mechanism is an organized collection of entities and activities that produces, underlies, or maintains a phenomenon, and 2) a mechanistic explanation describes, represents, or provides information about the mechanism producing, underlying, or maintaining the phenomenon to be explained (i.e. the explanandum phenomenon) (Bechtel and Abrahamsen (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Universal Biology: Assessing universality from a single example.Carlos Mariscal - 2015 - In The Impact of Discovering Life Beyond Earth. Cambridge, UK: pp. 113-126.
    Is it possible to know anything about life we have not yet encountered? We know of only one example of life: our own. Given this, many scientists are inclined to doubt that any principles of Earth’s biology will generalize to other worlds in which life might exist. Let’s call this the “N = 1 problem.” By comparison, we expect the principles of geometry, mechanics, and chemistry would generalize. Interestingly, each of these has predictable consequences when applied to biology. The surface-to-volume (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A New Role for Mathematics in Empirical Sciences.Atoosa Kasirzadeh - 2021 - Philosophy of Science 88 (4):686-706.
    Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena or it explains these phenomena by imposing constraints on them. This article identifies a third and distinct role that has not been fully appreciated in the literature on applicability of mathematics and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemic Dependence and Understanding: Reformulating through Symmetry.Josh Hunt - 2023 - British Journal for the Philosophy of Science 74 (4):941-974.
    Science frequently gives us multiple, compatible ways of solving the same problem or formulating the same theory. These compatible formulations change our understanding of the world, despite providing the same explanations. According to what I call "conceptualism," reformulations change our understanding by clarifying the epistemic structure of theories. I illustrate conceptualism by analyzing a typical example of symmetry-based reformulation in chemical physics. This case study poses a problem for "explanationism," the rival thesis that differences in understanding require ontic explanatory differences. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explanatory Distance.Elanor Taylor - 2023 - British Journal for the Philosophy of Science 74 (1):221-239.
    When a train operator tells us that our train will be late ‘because of delays’, their attempt at explanation fails because there is insufficient distance between the explanans and the explanandum. In this paper, I motivate and defend an account of ‘explanatory distance’, based on the idea that explanations give information about dependence. I show that this account offers useful resources for addressing problem cases, including recent debates about grounding explanation, and the historical case of Molière’s dormitive virtue.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Putting explanation back into “inference to the best explanation”.Marc Lange - 2022 - Noûs 56 (1):84-109.
    Many philosophers argue that explanatoriness plays no special role in confirmation – that “inference to the best explanation” (IBE) incorrectly demands giving hypotheses extra credit for their potential explanatory qualities beyond the credit they already deserve for their predictive successes. This paper argues against one common strategy for responding to this thought – that is, for trying to fit IBE within a Bayesian framework. That strategy argues that a hypothesis’ explanatory quality (its “loveliness”) contributes either to its prior probability or (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Why Attention is Not Explanation: Surgical Intervention and Causal Reasoning about Neural Models.Christopher Grimsley, Elijah Mayfield & Julia Bursten - 2020 - Proceedings of the 12th Conference on Language Resources and Evaluation.
    As the demand for explainable deep learning grows in the evaluation of language technologies, the value of a principled grounding for those explanations grows as well. Here we study the state-of-the-art in explanation for neural models for natural-language processing (NLP) tasks from the viewpoint of philosophy of science. We focus on recent evaluation work that finds brittleness in explanations obtained through attention mechanisms.We harness philosophical accounts of explanation to suggest broader conclusions from these studies. From this analysis, we assert the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Psychoneural Isomorphism: From Metaphysics to Robustness.Alfredo Vernazzani - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    At the beginning of the 20th century, Gestalt psychologists put forward the concept of psychoneural isomorphism, which was meant to replace Fechner’s obscure notion of psychophysical parallelism and provide a heuristics that may facilitate the search for the neural correlates of the mind. However, the concept has generated much confusion in the debate, and today its role is still unclear. In this contribution, I will attempt a little conceptual spadework in clarifying the concept of psychoneural isomorphism, focusing exclusively on conscious (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Prediction and Topological Models in Neuroscience.Bryce Gessell, Matthew Stanley, Benjamin Geib & Felipe De Brigard - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modality and constitution in distinctively mathematical explanations.Mark Povich - 2020 - European Journal for Philosophy of Science 10 (3):1-10.
    Lange argues that some natural phenomena can be explained by appeal to mathematical, rather than natural, facts. In these “distinctively mathematical” explanations, the core explanatory facts are either modally stronger than facts about ordinary causal law or understood to be constitutive of the physical task or arrangement at issue. Craver and Povich argue that Lange’s account of DME fails to exclude certain “reversals”. Lange has replied that his account can avoid these directionality charges. Specifically, Lange argues that in legitimate DMEs, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Model Explanation Versus Model-Induced Explanation.Insa Lawler & Emily Sullivan - 2021 - Foundations of Science 26 (4):1049-1074.
    Scientists appeal to models when explaining phenomena. Such explanations are often dubbed model explanations or model-based explanations. But what are the precise conditions for ME? Are ME special explanations? In our paper, we first rebut two definitions of ME and specify a more promising one. Based on this analysis, we single out a related conception that is concerned with explanations that are induced from working with a model. We call them ‘model-induced explanations’. Second, we study three paradigmatic cases of alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations