Switch to: Citations

Add references

You must login to add references.
  1. The Structure of Scientific Revolutions.Thomas Samuel Kuhn - 1962 - Chicago: University of Chicago Press. Edited by Otto Neurath.
    A scientific community cannot practice its trade without some set of received beliefs. These beliefs form the foundation of the "educational initiation that prepares and licenses the student for professional practice". The nature of the "rigorous and rigid" preparation helps ensure that the received beliefs are firmly fixed in the student's mind. Scientists take great pains to defend the assumption that scientists know what the world is like...To this end, "normal science" will often suppress novelties which undermine its foundations. Research (...)
    Download  
     
    Export citation  
     
    Bookmark   2709 citations  
  • Charles Janet: Unrecognized genius of the periodic system. [REVIEW]Philip J. Stewart - 2009 - Foundations of Chemistry 12 (1):5-15.
    Janet is known almost exclusively for his left-step periodic table (LSPT). A study of his writings shows him to have been a highly creative thinker and a brilliant draftsman. His approach was primarily arithmetic-geometric, but it led him to anticipate the discovery of deuterium, helium-3, transuranian elements, antimatter and energy from nuclear fusion. He recognized the (n + ℓ) rule well before Madelung and correctly placed the actinides. His controversial treatment of helium at the head of the alkaline earth elements (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Structure of Scientific Revolutions.Thomas S. Kuhn - 1962 - Chicago, IL: University of Chicago Press. Edited by Ian Hacking.
    Thomas S. Kuhn's classic book is now available with a new index.
    Download  
     
    Export citation  
     
    Bookmark   4756 citations  
  • The 'Chemical Mechanics' of the Periodic Table.Arnout Ceulemans & Pieter Thyssen - 2018 - In Eric R. Scerri & Guillermo Restrepo (eds.), Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table. Oxford University Press. pp. 104-121.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Periodic Table, Its Story and Its Significance.Eric R. Scerri - 2007 - New York, Oxford: Oxford University Press.
    The periodic table of the elements is one of the most powerful icons in science: a single document that captures the essence of chemistry in an elegant pattern. Indeed, nothing quite like it exists in biology or physics, or any other branch of science, for that matter. One sees periodic tables everywhere: in industrial labs, workshops, academic labs, and of course, lecture halls. It is sometimes said that chemistry has no deep ideas, unlike physics, which can boast quantum mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Dialectics and synergetics in chemistry. Periodic Table and oscillating reactions.Naum S. Imyanitov - 2015 - Foundations of Chemistry 18 (1):21-56.
    This work utilizes examples from chemical sciences to present fundamentals of dialectics and synergetics. The laws of dialectics remain appropriate at the level of atoms, at the level of molecules, at the level of the reactions, and at the level of ideas. The law of the unity and conflict of opposites is seen, for instance, in the relationships between the ionization energy and electron affinity of atoms, between the forward and back reactions, as well as in the differentiation and integration (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What and how physics contributes to understanding the periodic law.V. N. Ostrovsky - 2001 - Foundations of Chemistry 3 (2):145-181.
    The current status of explanation worked out by Physics for the Periodic Law is considered from philosophical and methodological points of view. The principle gnosiological role of approximations and models in providing interpretation for complicated systems is emphasized. The achievements, deficiencies and perspectives of the existing quantum mechanical interpretation of the Periodic Table are discussed. The mainstream ab initio theory is based on analysis of selfconsistent one-electron effective potential. Alternative approaches employing symmetry considerations and applying group theory usually require some (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations