Switch to: Citations

Add references

You must login to add references.
  1. Derivation of the Dirac Equation by Conformal Differential Geometry.Enrico Santamato & Francesco De Martini - 2013 - Foundations of Physics 43 (5):631-641.
    A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Progress in metric-affine gauge theories of gravity with local scale invariance.Friedrich W. Hehl, J. Dermott McCrea, Eckehard W. Mielke & Yuval Ne'eman - 1989 - Foundations of Physics 19 (9):1075-1100.
    Einstein's general relativity theory describes very well the gravitational phenomena in themacroscopic world. In themicroscopic domain of elementary particles, however, it does not exhibit gauge invariance or approximate Bjorken type scaling, properties which are believed to be indispensible for arenormalizable field theory. We argue that thelocal extension of space-time symmetries, such as of Lorentz and scale invariance, provides the clue for improvement. Eventually, this leads to aGL(4, R)-gauge approach to gravity in which the metric and the affine connection acquire the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Broken Weyl Invariance and the Origin of Mass.W. Drechsler & H. Tann - 1999 - Foundations of Physics 29 (7):1023-1064.
    A massless Weyl-invariant dynamics of a scalar, a Dirac spinor, and electromagnetic fields is formulated in a Weyl space, W4, allowing for conformal rescalings of the metric and of all fields with nontrivial Weyl weight together with the associated transformations of the Weyl vector fields κμ, representing the D(1) gauge fields, with D(1) denoting the dilatation group. To study the appearance of nonzero masses in the theory the Weyl symmetry is broken explicitly and the corresponding reduction of the Weyl space (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gravitation and cosmology: principles and applications of the general theory of relativity.Steven Weinberg - 1972 - New York,: Wiley.
    Weinberg's 1972 work, in his description, had two purposes. The first was practical to bring together and assess the wealth of data provided over the previous decade while realizing that newer data would come in even as the book was being printed. He hoped the comprehensive picture would prepare the reader and himself to that new data as it emerged. The second was to produce a textbook about general relativity in which geometric ideas were not given a starring role for (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Paving the way for transitions --- a case for Weyl geometry.Erhard Scholz - unknown
    It is discussed how the Weyl geometric generalization of Riemannian geometry relates to Jordan-Brans-Dicke theory and how it leads to a weak generalization of Einstein gravity. The generalization of geometry goes back to Weyl's proposal of 1918; the generalization of gravity was proposed by Omote, Utiyama, Dirac and others in the 1970s. Here we reconsider the conceptual potential of this approach for establishing links between gravity, the electroweak sector of elementary particle physics, and cosmology. We explore the possibility of unifying (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Vigier III.Spin Foam Spinors & Fundamental Space-Time Geometry - 2000 - Foundations of Physics 30 (1).
    Download  
     
    Export citation  
     
    Bookmark   1 citation