Switch to: Citations

Add references

You must login to add references.
  1. Coordinatisation and canonical bases in simple theories.Bradd Hart, Byunghan Kim & Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):293-309.
    In this paper we discuss several generalization of theorems from stability theory to simple theories. Cherlin and Hrushovski, in [2] develop a substitute for canonical bases in finite rank, ω-categorical supersimple theories. Motivated by methods there, we prove the existence of canonical bases (in a suitable sense) for types in any simple theory. This is done in Section 2. In general these canonical bases will (as far as we know) exist only as “hyperimaginaries”, namely objects of the forma/Ewhereais a possibly (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Lovely pairs of models.Itay Ben-Yaacov, Anand Pillay & Evgueni Vassiliev - 2003 - Annals of Pure and Applied Logic 122 (1-3):235-261.
    We introduce the notion of a lovely pair of models of a simple theory T, generalizing Poizat's “belles paires” of models of a stable theory and the third author's “generic pairs” of models of an SU-rank 1 theory. We characterize when a saturated model of the theory TP of lovely pairs is a lovely pair , finding an analog of the nonfinite cover property for simple theories. We show that, under these hypotheses, TP is also simple, and we study forking (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Simple Theories.Frank O. Wagner - 2002 - Bulletin of Symbolic Logic 8 (4):522-524.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On uncountable hypersimple unidimensional theories.Ziv Shami - 2014 - Archive for Mathematical Logic 53 (1-2):203-210.
    We extend the dichotomy between 1-basedness and supersimplicity proved in Shami :309–332, 2011). The generalization we get is to arbitrary language, with no restrictions on the topology [we do not demand type-definabilty of the open set in the definition of essential 1-basedness from Shami :309–332, 2011)]. We conclude that every hypersimple unidimensional theory that is not s-essentially 1-based by means of the forking topology is supersimple. We also obtain a strong version of the above dichotomy in the case where the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On analyzability in the forking topology for simple theories.Ziv Shami - 2006 - Annals of Pure and Applied Logic 142 (1):115-124.
    We show that in a simple theory T in which the τf-topologies are closed under projections every type analyzable in a supersimple τf-open set has ordinal SU-rank. In particular, if in addition T is unidimensional, the existence of a supersimple unbounded τf-open set implies T is supersimple. We also introduce the notion of a standard τ-metric and show that for simple theories its completeness is equivalent to the compactness of the τ-topology.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On countable simple unidimensional theories.Anand Pillay - 2003 - Journal of Symbolic Logic 68 (4):1377-1384.
    We prove that any countable simple unidimensional theory T is supersimple, under the additional assumptions that T eliminates hyperimaginaries and that the $D_\phi-ranks$ are finite and definable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Simple theories.Byunghan Kim & Anand Pillay - 1997 - Annals of Pure and Applied Logic 88 (2-3):149-164.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Reducts of Stable, CM-Trivial Theories.Herwig Nübling - 2005 - Journal of Symbolic Logic 70 (4):1025 - 1036.
    We show that every reduct of a stable. CM-trivial theory of finite U-rank is CM-trivial.
    Download  
     
    Export citation  
     
    Bookmark   1 citation