Switch to: References

Add citations

You must login to add citations.
  1. n-Simple theories.Alexei S. Kolesnikov - 2005 - Annals of Pure and Applied Logic 131 (1-3):227-261.
    The main topic of this paper is the investigation of generalized amalgamation properties for simple theories. That is, we are trying to answer the question of when a simple theory has the property of n-dimensional amalgamation, where two-dimensional amalgamation is the Independence Theorem for simple theories. We develop the notions of strong n-simplicity and n-simplicity for 1≤n≤ω, where both “1-simple” and “strongly 1-simple” are the same as “simple”. For strong n-simplicity, we present examples of simple unstable theories in each subclass (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Independence, dimension and continuity in non-forking frames.Adi Jarden & Alon Sitton - 2013 - Journal of Symbolic Logic 78 (2):602-632.
    The notion $J$ is independent in $(M,M_0,N)$ was established by Shelah, for an AEC (abstract elementary class) which is stable in some cardinal $\lambda$ and has a non-forking relation, satisfying the good $\lambda$-frame axioms and some additional hypotheses. Shelah uses independence to define dimension. Here, we show the connection between the continuity property and dimension: if a non-forking satisfies natural conditions and the continuity property, then the dimension is well-behaved. As a corollary, we weaken the stability hypothesis and two additional (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On enveloping type-definable structures.Cédric Milliet - 2011 - Journal of Symbolic Logic 76 (3):1023 - 1034.
    We observe simple links between equivalence relations, groups, fields and groupoids (and between preorders, semi-groups, rings and categories), which are type-definable in an arbitrary structure, and apply these observations to the particular context of small and simple structures. Recall that a structure is small if it has countably many n-types with no parameters for each natural number n. We show that a θ-type-definable group in a small structure is the conjunction of definable groups, and extend the result to semi-groups, fields, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hyperimaginaries and Automorphism Groups.D. Lascar & A. Pillay - 2001 - Journal of Symbolic Logic 66 (1):127-143.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Coordinatisation and canonical bases in simple theories.Bradd Hart, Byunghan Kim & Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):293-309.
    In this paper we discuss several generalization of theorems from stability theory to simple theories. Cherlin and Hrushovski, in [2] develop a substitute for canonical bases in finite rank, ω-categorical supersimple theories. Motivated by methods there, we prove the existence of canonical bases (in a suitable sense) for types in any simple theory. This is done in Section 2. In general these canonical bases will (as far as we know) exist only as “hyperimaginaries”, namely objects of the forma/Ewhereais a possibly (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Properties of forking in {$ømega$}-free pseudo-algebraically closed fields.Zoé Chatzidakis - 2002 - Journal of Symbolic Logic 67 (3):957-996.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Lovely pairs of models: the non first order case.Itay Ben-Yaacov - 2004 - Journal of Symbolic Logic 69 (3):641-662.
    We prove that for every simple theory T there is a compact abstract theory T.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Theories with equational forking.Markus Junker & Ingo Kraus - 2002 - Journal of Symbolic Logic 67 (1):326-340.
    We show that equational independence in the sense of Srour equals local non-forking. We then examine so-called almost equational theories where equational independence is a symmetric relation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Group configurations and germs in simple theories.Itay Ben-Yaacov - 2002 - Journal of Symbolic Logic 67 (4):1581-1600.
    We develop the theory of germs of generic functions in simple theories. Starting with an algebraic quadrangle (or other similar hypotheses), we obtain an "almost" generic group chunk, where the product is denned up to a bounded number of possible values. This is the first step towards the proof of the group configuration theorem for simple theories, which is completed in [3].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generic Expansions of Geometric Theories.Somaye Jalili, Massoud Pourmahdian & Nazanin Roshandel Tavana - forthcoming - Journal of Symbolic Logic:1-22.
    As a continuation of ideas initiated in [19], we study bi-colored (generic) expansions of geometric theories in the style of the Fraïssé–Hrushovski construction method. Here we examine that the properties $NTP_{2}$, strongness, $NSOP_{1}$, and simplicity can be transferred to the expansions. As a consequence, while the corresponding bi-colored expansion of a red non-principal ultraproduct of p-adic fields is $NTP_{2}$, the expansion of algebraically closed fields with generic automorphism is a simple theory. Furthermore, these theories are strong with $\operatorname {\mathrm {bdn}}(\text (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Transitivity, Lowness, and Ranks in Nsop Theories.Artem Chernikov, K. I. M. Byunghan & Nicholas Ramsey - 2023 - Journal of Symbolic Logic 88 (3):919-946.
    We develop the theory of Kim-independence in the context of NSOP $_{1}$ theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that -Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low NSOP $_{1}$ theory, Shelah strong types and Lascar strong types coincide and, additionally, we introduce a notion of rank for NSOP $_{1}$ theories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On model-theoretic tree properties.Artem Chernikov & Nicholas Ramsey - 2016 - Journal of Mathematical Logic 16 (2):1650009.
    We study model theoretic tree properties and their associated cardinal invariants. In particular, we obtain a quantitative refinement of Shelah’s theorem for countable theories, show that [Formula: see text] is always witnessed by a formula in a single variable and that weak [Formula: see text] is equivalent to [Formula: see text]. Besides, we give a characterization of [Formula: see text] via a version of independent amalgamation of types and apply this criterion to verify that some examples in the literature are (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Disjoint $n$ -Amalgamation and Pseudofinite Countably Categorical Theories.Alex Kruckman - 2019 - Notre Dame Journal of Formal Logic 60 (1):139-160.
    Disjoint n-amalgamation is a condition on a complete first-order theory specifying that certain locally consistent families of types are also globally consistent. In this article, we show that if a countably categorical theory T admits an expansion with disjoint n-amalgamation for all n, then T is pseudofinite. All theories which admit an expansion with disjoint n-amalgamation for all n are simple, but the method can be extended, using filtrations of Fraïssé classes, to show that certain nonsimple theories are pseudofinite. As (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forking and Dividing in Henson Graphs.Gabriel Conant - 2017 - Notre Dame Journal of Formal Logic 58 (4):555-566.
    For n≥3, define Tn to be the theory of the generic Kn-free graph, where Kn is the complete graph on n vertices. We prove a graph-theoretic characterization of dividing in Tn and use it to show that forking and dividing are the same for complete types. We then give an example of a forking and nondividing formula. Altogether, Tn provides a counterexample to a question of Chernikov and Kaplan.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Schlanke Körper (Slim fields).Markus Junker & Jochen Koenigsmann - 2010 - Journal of Symbolic Logic 75 (2):481-500.
    We examine fields in which model theoretic algebraic closure coincides with relative field theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour. For example, they are exactly the fields in which algebraic independence is an abstract independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC fields, model complete large fields and henselian valued fields of characteristic 0.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Canonical forking in AECs.Will Boney, Rami Grossberg, Alexei Kolesnikov & Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (7):590-613.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Generic structures and simple theories.Z. Chatzidakis & A. Pillay - 1998 - Annals of Pure and Applied Logic 95 (1-3):71-92.
    We study structures equipped with generic predicates and/or automorphisms, and show that in many cases we obtain simple theories. We also show that a bounded PAC field is simple. 1998 Published by Elsevier Science B.V. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Strongly determined types.Alexandre A. Ivanov & Dugald Macpherson - 1999 - Annals of Pure and Applied Logic 99 (1-3):197-230.
    The notion of a strongly determined type over A extending p is introduced, where p .S. A strongly determined extension of p over A assigns, for any model M )- A, a type q S extending p such that, if realises q, then any elementary partial map M → M which fixes acleq pointwise is elementary over . This gives a crude notion of independence which arises very frequently. Examples are provided of many different kinds of theories with strongly determined (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • ℵ0-categorical structures with a predimension.David M. Evans - 2002 - Annals of Pure and Applied Logic 116 (1-3):157-186.
    We give an axiomatic framework for the non-modular simple 0-categorical structures constructed by Hrushovski. This allows us to verify some of their properties in a uniform way, and to show that these properties are preserved by iterations of the construction.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Generalized amalgamation and n -simplicity.Byunghan Kim, Alexei S. Kolesnikov & Akito Tsuboi - 2008 - Annals of Pure and Applied Logic 155 (2):97-114.
    We study generalized amalgamation properties in simple theories. We formulate a notion of generalized amalgamation in such a way so that the properties are preserved when we pass from T to Teq or Theq; we provide several equivalent ways of formulating the notion of generalized amalgamation.We define two distinct hierarchies of simple theories characterized by their amalgamation properties; examples are given to show the difference between the hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Some remarks on indiscernible sequences.Enrique Casanovas - 2003 - Mathematical Logic Quarterly 49 (5):475-478.
    We prove a property of generic homogeneity of tuples starting an infinite indiscernible sequence in a simple theory and we use it to give a shorter proof of the Independence Theorem for Lascar strong types. We also characterize the relation of starting an infinite indiscernible sequence in terms of coheirs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Supersimplicity and quadratic extensions.A. Martin-Pizarro & F. O. Wagner - 2009 - Archive for Mathematical Logic 48 (1):55-61.
    An elliptic curve over a supersimple field with exactly one extension of degree 2 has an s-generic point.
    Download  
     
    Export citation  
     
    Bookmark  
  • 2005 annual meeting of the association for symbolic logic.Ilijas Farah, Deirdre Haskell, Andrey Morozov, Vladimir Pestov & Jindrich Zapletal - 2006 - Bulletin of Symbolic Logic 12 (1):143.
    Download  
     
    Export citation  
     
    Bookmark  
  • Notions around tree property 1.Byunghan Kim & Hyeung-Joon Kim - 2011 - Annals of Pure and Applied Logic 162 (9):698-709.
    In this paper, we study the notions related to tree property 1 , or, equivalently, SOP2. Among others, we supply a type-counting criterion for TP1 and show the equivalence of TP1 and k- TP1. Then we introduce the notions of weak k- TP1 for k≥2, and also supply type-counting criteria for those. We do not know whether weak k- TP1 implies TP1, but at least we prove that each weak k- TP1 implies SOP1. Our generalization of the tree-indiscernibility results in (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Galois groups of first order theories.E. Casanovas, D. Lascar, A. Pillay & M. Ziegler - 2001 - Journal of Mathematical Logic 1 (02):305-319.
    We study the groups Gal L and Gal KP, and the associated equivalence relations EL and EKP, attached to a first order theory T. An example is given where EL≠ EKP. It is proved that EKP is the composition of EL and the closure of EL. Other examples are given showing this is best possible.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Constructing the hyperdefinable group from the group configuration.Tristram de Piro, Byunghan Kim & Jessica Millar - 2006 - Journal of Mathematical Logic 6 (2):121-139.
    Under [Formula: see text]-amalgamation, we obtain the canonical hyperdefinable group from the group configuration.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On PAC and Bounded Substructures of a Stable Structure.Anand Pillay & Dominika Polkowska - 2006 - Journal of Symbolic Logic 71 (2):460 - 472.
    We introduce and study the notions of a PAC-substructure of a stable structure, and a bounded substructure of an arbitrary substructure, generalizing [10]. We give precise definitions and equivalences, saying what it means for properties such as PAC to be first order, study some examples (such as differentially closed fields) in detail, relate the material to generic automorphisms, and generalize a "descent theorem" for pseudo-algebraically closed fields to the stable context. We also point out that the elementary invariants of pseudo-algebraically (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Geometry of Forking in Simple Theories.Assaf Peretz - 2006 - Journal of Symbolic Logic 71 (1):347 - 359.
    We investigate the geometry of forking for SU-rank 2 elements in supersimple ω-categorical theories and prove stable forking and some structural properties for such elements. We extend this analysis to the case of SU-rank 3 elements.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coordinatisation by Binding Groups and Unidimensionality in Simple Theories.Ziv Shami - 2004 - Journal of Symbolic Logic 69 (4):1221 - 1242.
    In a simple theory with elimination of finitary hyperimaginaries if tp(a) is real and analysable over a definable set Q, then there exists a finite sequence ( $a_{i}|i \leq n^{*}$ ) $\subseteq dcl^{eq}$ (a) with $a_{n}*$ = a such that for every $i \leq n*$ , if $p_{i} = tp(a_{i}/{a_{i}|j < i}$ ) then $Aut(p_{i}/Q)$ is type-definable with its action on $p_{i}^{c}$ . A unidimensional simple theory eliminates the quantifier $\exists^{\infty}$ and either interprets (in $C^{eq}$ ) an infinite type-definable group (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Independence relations for exponential fields.Vahagn Aslanyan, Robert Henderson, Mark Kamsma & Jonathan Kirby - 2023 - Annals of Pure and Applied Logic 174 (8):103288.
    Download  
     
    Export citation  
     
    Bookmark  
  • Recursive functions and existentially closed structures.Emil Jeřábek - 2019 - Journal of Mathematical Logic 20 (1):2050002.
    The purpose of this paper is to clarify the relationship between various conditions implying essential undecidability: our main result is that there exists a theory T in which all partially recursive functions are representable, yet T does not interpret Robinson’s theory R. To this end, we borrow tools from model theory — specifically, we investigate model-theoretic properties of the model completion of the empty theory in a language with function symbols. We obtain a certain characterization of ∃∀ theories interpretable in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Laforte, G., see Downey, R.T. Arai, Z. Chatzidakis & A. Pillay - 1998 - Annals of Pure and Applied Logic 95 (1-3):287.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • On ◁∗-maximality.Mirna Džamonja & Saharon Shelah - 2004 - Annals of Pure and Applied Logic 125 (1-3):119-158.
    This paper investigates a connection between the semantic notion provided by the ordering * among theories in model theory and the syntactic SOPn hierarchy of Shelah. It introduces two properties which are natural extensions of this hierarchy, called SOP2 and SOP1. It is shown here that SOP3 implies SOP2 implies SOP1. In Shelah's article 229) it was shown that SOP3 implies *-maximality and we prove here that *-maximality in a model of GCH implies a property called SOP2″. It has been (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The number of types in simple theories.Enrique Casanovas - 1999 - Annals of Pure and Applied Logic 98 (1-3):69-86.
    We continue work of Shelah on the cardinality of families of pairwise incompatible types in simple theories obtaining characterizations of simple and supersimple theories. We develop a local analysis of the number of types in simple theories and we find a new example of a simple unstable theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Simplicity and uncountable categoricity in excellent classes.Tapani Hyttinen & Olivier Lessmann - 2006 - Annals of Pure and Applied Logic 139 (1):110-137.
    We introduce Lascar strong types in excellent classes and prove that they coincide with the orbits of the group generated by automorphisms fixing a model. We define a new independence relation using Lascar strong types and show that it is well-behaved over models, as well as over finite sets. We then develop simplicity and show that, under simplicity, the independence relation satisfies all the properties of nonforking in a stable first order theory. Further, simplicity for an excellent class, as well (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A note on Lascar strong types in simple theories.Byunghan Kim - 1998 - Journal of Symbolic Logic 63 (3):926-936.
    Let T be a countable, small simple theory. In this paper, we prove that for such T, the notion of Lascar strong type coincides with the notion of strong type, over an arbitrary set.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The prospects for mathematical logic in the twenty-first century.Samuel R. Buss, Alexander S. Kechris, Anand Pillay & Richard A. Shore - 2001 - Bulletin of Symbolic Logic 7 (2):169-196.
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Compactness and independence in non first order frameworks.Itay Ben-Yaacov - 2005 - Bulletin of Symbolic Logic 11 (1):28-50.
    This communication deals with positive model theory, a non first order model theoretic setting which preserves compactness at the cost of giving up negation. Positive model theory deals transparently with hyperimaginaries, and accommodates various analytic structures which defy direct first order treatment. We describe the development of simplicity theory in this setting, and an application to the lovely pairs of models of simple theories without the weak non finite cover property.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The kim–pillay theorem for abstract elementary categories.Mark Kamsma - 2020 - Journal of Symbolic Logic 85 (4):1717-1741.
    We introduce the framework of AECats, generalizing both the category of models of some first-order theory and the category of subsets of models. Any AEC and any compact abstract theory forms an AECat. In particular, we find applications in positive logic and continuous logic: the category of models of a positive or continuous theory is an AECat. The Kim–Pillay theorem for first-order logic characterizes simple theories by the properties dividing independence has. We prove a version of the Kim–Pillay theorem for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Independence over arbitrary sets in NSOP1 theories.Jan Dobrowolski, Byunghan Kim & Nicholas Ramsey - 2022 - Annals of Pure and Applied Logic 173 (2):103058.
    We study Kim-independence over arbitrary sets. Assuming that forking satisfies existence, we establish Kim's lemma for Kim-dividing over arbitrary sets in an NSOP1 theory. We deduce symmetry of Kim-independence and the independence theorem for Lascar strong types.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pseudofinite structures and simplicity.Darío García, Dugald Macpherson & Charles Steinhorn - 2015 - Journal of Mathematical Logic 15 (1):1550002.
    We explore a notion of pseudofinite dimension, introduced by Hrushovski and Wagner, on an infinite ultraproduct of finite structures. Certain conditions on pseudofinite dimension are identified that guarantee simplicity or supersimplicity of the underlying theory, and that a drop in pseudofinite dimension is equivalent to forking. Under a suitable assumption, a measure-theoretic condition is shown to be equivalent to local stability. Many examples are explored, including vector spaces over finite fields viewed as 2-sorted finite structures, and homocyclic groups. Connections are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Lovely pairs of models.Itay Ben-Yaacov, Anand Pillay & Evgueni Vassiliev - 2003 - Annals of Pure and Applied Logic 122 (1-3):235-261.
    We introduce the notion of a lovely pair of models of a simple theory T, generalizing Poizat's “belles paires” of models of a stable theory and the third author's “generic pairs” of models of an SU-rank 1 theory. We characterize when a saturated model of the theory TP of lovely pairs is a lovely pair , finding an analog of the nonfinite cover property for simple theories. We show that, under these hypotheses, TP is also simple, and we study forking (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Forking and independence in o-minimal theories.Alfred Dolich - 2004 - Journal of Symbolic Logic 69 (1):215-240.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Definability and definable groups in simple theories.Anand Pillay - 1998 - Journal of Symbolic Logic 63 (3):788-796.
    We continue the study of simple theories begun in [3] and [5]. We first find the right analogue of definability of types. We then develop the theory of generic types and stabilizers for groups definable in simple theories. The general ideology is that the role of formulas (or definability) in stable theories is replaced by partial types (or ∞-definability) in simple theories.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Forking, imaginaries, and other features of.Christian D’elbée - 2021 - Journal of Symbolic Logic 86 (2):669-700.
    We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called $\mathrm {ACFG}$. This theory was introduced in [16] as a new example of $\mathrm {NSOP}_{1}$ nonsimple theory. In this paper we describe more features of $\mathrm {ACFG}$, such as imaginaries. We also study various independence relations in $\mathrm {ACFG}$, such as Kim-independence or forking independence, and describe interactions between them.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Simple generic structures.Massoud Pourmahdian - 2003 - Annals of Pure and Applied Logic 121 (2-3):227-260.
    A study of smooth classes whose generic structures have simple theory is carried out in a spirit similar to Hrushovski 147; Simplicity and the Lascar group, preprint, 1997) and Baldwin–Shi 1). We attach to a smooth class K0, of finite -structures a canonical inductive theory TNat, in an extension-by-definition of the language . Here TNat and the class of existentially closed models of =T+,EX, play an important role in description of the theory of the K0,-generic. We show that if M (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simplicity, and stability in there.Byunghan Kim - 2001 - Journal of Symbolic Logic 66 (2):822-836.
    Firstly, in this paper, we prove that the equivalence of simplicity and the symmetry of forking. Secondly, we attempt to recover definability part of stability theory to simplicity theory. In particular, using elimination of hyperimaginaries we prove that for any supersimple T, canonical base of an amalgamation class P is the union of names of ψ-definitions of P, ψ ranging over stationary L-formulas in P. Also, we prove that the same is true with stable formulas for an 1-based theory having (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A note on the non‐forking‐instances topology.Ziv Shami - 2020 - Mathematical Logic Quarterly 66 (3):336-340.
    The non‐forking‐instances topology (NFI topology) is a topology on the Stone space of a theory T that depends on a reduct of T. This topology has been used in [6] to describe the set of universal transducers for (invariants sets that translate forking‐open sets in to forking‐open sets in T). In this paper we show that in contrast to the stable case, the NFI topology need not be invariant over parameters in but a weak version of this holds for any (...)
    Download  
     
    Export citation  
     
    Bookmark