Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory and the Continuum Hypothesis.Kenneth Kunen - 1966 - Journal of Symbolic Logic 35 (4):591-592.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • (1 other version)Distributive Initial Segments of the Degrees of Unsolvability.A. H. Lachlan - 1968 - Mathematical Logic Quarterly 14 (30):457-472.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Local initial segments of the Turing degrees.Bjørn Kjos-Hanssen - 2003 - Bulletin of Symbolic Logic 9 (1):26-36.
    Recent results on initial segments of the Turing degrees are presented, and some conjectures about initial segments that have implications for the existence of nontrivial automorphisms of the Turing degrees are indicated.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lattices of c-degrees.Robert S. Lubarsky - 1987 - Annals of Pure and Applied Logic 36:115-118.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Distributive Initial Segments of the Degrees of Unsolvability.A. H. Lachlan - 1968 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 14 (30):457-472.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)The first‐order theory of the c‐degrees.Paddy Farrinoton - 1984 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 30 (26‐29):437-446.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Sequences of Degrees of Constructibility (Solution of Friedman'S Problem 75).Bohuslav Balcar & Petr Hájek - 1978 - Mathematical Logic Quarterly 24 (19-24):291-296.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Local definitions in degeree structures: The Turing jump, hyperdegrees and beyond.Richard A. Shore - 2007 - Bulletin of Symbolic Logic 13 (2):226-239.
    There are $\Pi_5$ formulas in the language of the Turing degrees, D, with ≤, ∨ and $\vedge$ , that define the relations $x" \leq y"$ , x" = y" and so $x \in L_{2}(y)=\{x\geqy|x"=y"\}$ in any jump ideal containing $0^(\omega)$ . There are also $\Sigma_6$ & $\Pi_6$ and $\Pi_8$ formulas that define the relations w = x" and w = x', respectively, in any such ideal I. In the language with just ≤ the quantifier complexity of each of these definitions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation