Switch to: References

Add citations

You must login to add citations.
  1. ω-circularity of Yablo's paradox.Ahmet Çevik - forthcoming - Logic and Logical Philosophy:1.
    In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Generalized Löb’s Theorem.Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal (Vol. 4, No. 1-1):1-5.
    Download  
     
    Export citation  
     
    Bookmark  
  • On ramsey’s theorem and the existence of infinite chains or infinite anti-chains in infinite posets.Eleftherios Tachtsis - 2016 - Journal of Symbolic Logic 81 (1):384-394.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An axiomatic theory of well-orderings.Oliver Deiser - 2011 - Review of Symbolic Logic 4 (2):186-204.
    We introduce a new simple first-order framework for theories whose objects are well-orderings (lists). A system ALT (axiomatic list theory) is presented and shown to be equiconsistent with ZFC (Zermelo Fraenkel Set Theory with the Axiom of Choice). The theory sheds new light on the power set axiom and on Gs axiom of constructibility. In list theory there are strong arguments favoring Gs axiom, while a bare analogon of the set theoretic power set axiom looks artificial. In fact, there is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness theorem, such a formal system cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On the impossibility of events of zero probability.Asad Zaman - 1987 - Theory and Decision 23 (2):157-159.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lattice initial segments of the hyperdegrees.Richard A. Shore & Bjørn Kjos-Hanssen - 2010 - Journal of Symbolic Logic 75 (1):103-130.
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, $\scr{D}_{h}$ . In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable, locally finite lattice) is isomorphic to an initial segment of $\scr{D}_{h}$ . Corollaries include the decidability of the two quantifier theory of $\scr{D}_{h}$ and the undecidability of its three quantifier theory. The key tool in the proof is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A new applied approach for executing computations with infinite and infinitesimal quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Identity, indiscernibility, and philosophical claims.Décio Krause & Antonio Mariano Nogueira Coelho - 2005 - Axiomathes 15 (2):191-210.
    The concept of indiscernibility in a structure is analysed with the aim of emphasizing that in asserting that two objects are indiscernible, it is useful to consider these objects as members of (the domain of) a structure. A case for this usefulness is presented by examining the consequences of this view to the philosophical discussion on identity and indiscernibility in quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Believing the axioms. I.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (2):481-511.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • (1 other version)The independence of Ramsey's theorem.E. M. Kleinberg - 1969 - Journal of Symbolic Logic 34 (2):205-206.
    In [3] F. P. Ramsey proved as a theorem of Zermelo-Fraenkel set theory (ZF) with the Axiom of Choice (AC) the following result:(1) Theorem. Let A be an infinite class. For each integer n and partition {X, Y} of the size n subsets of A, there exists an infinite subclass of A all of whose size n subsets are contained in only one of X or Y.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Jumping through the transfinite: The master code hierarchy of Turing degrees.Harold T. Hodes - 1980 - Journal of Symbolic Logic 45 (2):204-220.
    Where $\underline{a}$ is a Turing degree and ξ is an ordinal $ , the result of performing ξ jumps on $\underline{a},\underline{a}^{(\xi)}$ , is defined set-theoretically, using Jensen's fine-structure results. This operation appears to be the natural extension through $(\aleph_1)^{L^\underline{a}}$ of the ordinary jump operations. We describe this operation in more degree-theoretic terms, examine how much of it could be defined in degree-theoretic terms and compare it to the single jump operation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relations between some cardinals in the absence of the axiom of choice.Lorenz Halbeisen & Saharon Shelah - 2001 - Bulletin of Symbolic Logic 7 (2):237-261.
    If we assume the axiom of choice, then every two cardinal numbers are comparable, In the absence of the axiom of choice, this is no longer so. For a few cardinalities related to an arbitrary infinite set, we will give all the possible relationships between them, where possible means that the relationship is consistent with the axioms of set theory. Further we investigate the relationships between some other cardinal numbers in specific permutation models and give some results provable without using (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • One hundred and two problems in mathematical logic.Harvey Friedman - 1975 - Journal of Symbolic Logic 40 (2):113-129.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Imbedding of the quantum logic in the modal system of Brower.Herman Dishkant - 1977 - Journal of Symbolic Logic 42 (3):321-328.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Towards a unified framework for developing ethical and practical Turing tests.Balaji Srinivasan & Kushal Shah - 2019 - AI and Society 34 (1):145-152.
    Since Turing proposed the first test of intelligence, several modifications have been proposed with the aim of making Turing’s proposal more realistic and applicable in the search for artificial intelligence. In the modern context, it turns out that some of these definitions of intelligence and the corresponding tests merely measure computational power. Furthermore, in the framework of the original Turing test, for a system to prove itself to be intelligent, a certain amount of deceit is implicitly required which can have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Σ 2 1 theory of axioms of symmetry.Galen Weitkamp - 1989 - Journal of Symbolic Logic 54 (3):727-734.
    The axiom of symmetry (A ℵ 0 ) asserts that for every function F: ω 2 → ω 2 there is a pair of reals x and y in ω 2 so that y is not in the countable set $\{(F(x))_n:n coded by F(x) and x is not in the set coded by F(y). A(Γ) denotes axiom A ℵ 0 with the restriction that graph(F) belongs to the pointclass Γ. In § 2 we prove A(Σ 1 1 ). In § (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical definability.Theodore A. Slaman - 1998 - In Harold Garth Dales & Gianluigi Oliveri (eds.), Truth in mathematics. New York: Oxford University Press, Usa. pp. 233.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak Forms of the Axiom of Choice and the Generalized Continuum Hypothesis.Arthur L. Rubin & Jean E. Rubin - 1993 - Mathematical Logic Quarterly 39 (1):7-22.
    In this paper we study some statements similar to the Partition Principle and the Trichotomy. We prove some relationships between these statements, the Axiom of Choice, and the Generalized Continuum Hypothesis. We also prove some independence results. MSC: 03E25, 03E50, 04A25, 04A50.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Interpretation of the Zermelo‐Fraenkel Set Theory and the Kelley‐Morse Set Theory in a Positive Theory.Olivier Esser - 1997 - Mathematical Logic Quarterly 43 (3):369-377.
    An interesting positive theory is the GPK theory. The models of this theory include all hyperuniverses (see [5] for a definition of these ones). Here we add a form of the axiom of infinity and a new scheme to obtain GPK∞+. We show that in these conditions, we can interprete the Kelley‐Morse theory (KM) in GPK∞+ (Theorem 3.7). This needs a preliminary property which give an interpretation of the Zermelo‐Fraenkel set theory (ZF) in GPK∞+. We also see what happens in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Counting systems and the First Hilbert problem.Yaroslav Sergeyev - 2010 - Nonlinear Analysis Series A 72 (3-4):1701-1708.
    The First Hilbert problem is studied in this paper by applying two instruments: a new methodology distinguishing between mathematical objects and mathematical languages used to describe these objects; and a new numeral system allowing one to express different infinite numbers and to use these numbers for measuring infinite sets. Several counting systems are taken into consideration. It is emphasized in the paper that different mathematical languages can describe mathematical objects (in particular, sets and the number of their elements) with different (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Admissible ordinals and intrinsic consistency.Michael Machtey - 1970 - Journal of Symbolic Logic 35 (3):389-400.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic expansions of structures.Julia F. Knight - 1973 - Journal of Symbolic Logic 38 (4):561-570.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hanf numbers for omitting types over particular theories.Julia F. Knight - 1976 - Journal of Symbolic Logic 41 (3):583-588.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The axiom of choice for well-ordered families and for families of well- orderable sets.Paul Howard & Jean E. Rubin - 1995 - Journal of Symbolic Logic 60 (4):1115-1117.
    We show that it is not possible to construct a Fraenkel-Mostowski model in which the axiom of choice for well-ordered families of sets and the axiom of choice for sets are both true, but the axiom of choice is false.
    Download  
     
    Export citation  
     
    Bookmark  
  • The model of set theory generated by countably many generic reals.Andreas Blass - 1981 - Journal of Symbolic Logic 46 (4):732-752.
    Adjoin, to a countable standard model M of Zermelo-Fraenkel set theory (ZF), a countable set A of independent Cohen generic reals. If one attempts to construct the model generated over M by these reals (not necessarily containing A as an element) as the intersection of all standard models that include M ∪ A, the resulting model fails to satisfy the power set axiom, although it does satisfy all the other ZF axioms. Thus, there is no smallest ZF model including M (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Mechanics, Formalization and the Cosmological Constant Problem.Jerzy Król & Torsten Asselmeyer-Maluga - 2020 - Foundations of Science 25 (4):879-904.
    Based on formal arguments from Zermelo–Fraenkel set theory we develop the environment for explaining and resolving certain fundamental problems in physics. By these formal tools we show that any quantum system defined by an infinite dimensional Hilbert space of states interferes with the spacetime structure M. M and the quantum system both gain additional degrees of freedom, given by models of Zermelo–Fraenkel set theory. In particular, M develops the ground state where classical gravity vanishes. Quantum mechanics distinguishes set-theoretic random forcing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The inscrutability of reference.Robert Williams - 2005 - Dissertation, University of St Andrews
    The metaphysics of representation poses questions such as: in virtue of what does a sentence, picture, or mental state represent that the world is a certain way? In the first instance, I have focused on the semantic properties of language: for example, what is it for a name such as ‘London’ to refer to something? Interpretationism concerning what it is for linguistic expressions to have meaning, says that constitutively, semantic facts are fixed by best semantic theory. As here developed, it (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Elementary Equivalence and Constructible Models of Zermelo-Fraenkel Set Theory.R. H. Cowen - 1976 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 22 (1):333-338.
    Download  
     
    Export citation  
     
    Bookmark  
  • Trees.Thomas J. Jech - 1971 - Journal of Symbolic Logic 36 (1):1-14.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Axioms of symmetry: Throwing darts at the real number line.Chris Freiling - 1986 - Journal of Symbolic Logic 51 (1):190-200.
    We will give a simple philosophical "proof" of the negation of Cantor's continuum hypothesis (CH). (A formal proof for or against CH from the axioms of ZFC is impossible; see Cohen [1].) We will assume the axioms of ZFC together with intuitively clear axioms which are based on some intuition of Stuart Davidson and an old theorem of Sierpinski and are justified by the symmetry in a thought experiment throwing darts at the real number line. We will in fact show (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Filosofía de las matemáticas, teoría de cardinales grandes y sus bases cognitivas.Wilfredo Quezada - 2017 - Revista de Filosofía 73:281-297.
    En este artículo se examinan algunas implicaciones del naturalismo matemático de P. Maddy como una concepción filosófica que permite superar las dificultades del ficcionalismo y el realismo fisicalista en matemáticas. Aparte de esto, la mayor virtud de tal concepción parece ser que resuelve el problema que plantea para la aplicabilidad de la matemática el no asumir la tesis de indispensabilidad de Quine sin comprometerse con su holismo confirmacional. A continuación, sobre la base de dificultades intrínsecas al programa de Maddy, exploramos (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Scientific Works of Tadeusz Batog.Jerzy Pogonowski - 1997 - Poznan Studies in the Philosophy of the Sciences and the Humanities 57:69-134.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Download  
     
    Export citation  
     
    Bookmark  
  • Orthomodular-valued models for quantum set theory.Masanao Ozawa - 2017 - Review of Symbolic Logic 10 (4):782-807.
    In 1981, Takeuti introduced quantum set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed linear subspaces of a Hilbert space in a manner analogous to Boolean-valued models of set theory, and showed that appropriate counterparts of the axioms of Zermelo–Fraenkel set theory with the axiom of choice hold in the model. In this paper, we aim at unifying Takeuti’s model with Boolean-valued models by constructing models based on general complete orthomodular (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The roots of contemporary Platonism.Penelope Maddy - 1989 - Journal of Symbolic Logic 54 (4):1121-1144.
    Though many working mathematicians embrace a rough and ready form of Platonism, that venerable position has suffered a checkered philosophical career. Indeed the three schools of thought with which most of us began our official philosophizing about mathematics—Intuitionism, Formalism, and Logicism—all stand in fundamental disagreement with Platonism. Nevertheless, various versions of Platonistic thinking survive in contemporary philosophical circles. The aim of this paper is to describe these views, and, as my title suggests, to trace their roots.I'll begin with some preliminary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • O tzw. programie Gödla.Krzysztof Wójtowicz - 2001 - Zagadnienia Filozoficzne W Nauce 29.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Leibnizian models of set theory.Ali Enayat - 2004 - Journal of Symbolic Logic 69 (3):775-789.
    A model is said to be Leibnizian if it has no pair of indiscernibles. Mycielski has shown that there is a first order axiom LM (the Leibniz-Mycielski axiom) such that for any completion T of Zermelo-Fraenkel set theory ZF, T has a Leibnizian model if and only if T proves LM. Here we prove: THEOREM A. Every complete theory T extending ZF + LM has $2^{\aleph_{0}}$ nonisomorphic countable Leibnizian models. THEOREM B. If $\kappa$ is aprescribed definable infinite cardinal of a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Remarks on Levy's reflection axiom.Martin Dowd - 1993 - Mathematical Logic Quarterly 39 (1):79-95.
    Adding higher types to set theory differs from adding inaccessible cardinals, in that higher type arguments apply to all sets rather than just ordinary ones. Levy's reflection axiom is justified, by considering the principle that we can pretend that the universe is a set, together with methods of Gaifman [8]. We reprove some results of Gaifman, and some facts about Levy's reflection axiom, including the fact that adding higher types yields no new theorems about sets. Some remarks on standard models (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Outer models and genericity.M. C. Stanley - 2003 - Journal of Symbolic Logic 68 (2):389-418.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods.David Pincus - 1972 - Journal of Symbolic Logic 37 (4):721-743.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Category theory, logic and formal linguistics: Some connections, old and new.Jean Gillibert & Christian Retoré - 2014 - Journal of Applied Logic 12 (1):1-13.
    Download  
     
    Export citation  
     
    Bookmark  
  • Penrose's Gödelian Argument A Review of Shadows of the Mind by Roger Penrose. [REVIEW]S. Feferman - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2:21-32.
    In his book Shadows of the Mind: A search for the missing science of con- sciousness [SM below], Roger Penrose has turned in another bravura perfor- mance, the kind we have come to expect ever since The Emperor’s New Mind [ENM ] appeared. In the service of advancing his deep convictions and daring conjectures about the nature of human thought and consciousness, Penrose has once more drawn a wide swath through such topics as logic, computa- tion, artificial intelligence, quantum physics (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The positive properties of isolic integers.Erik Ellentuck - 1972 - Journal of Symbolic Logic 37 (1):114-132.
    Download  
     
    Export citation  
     
    Bookmark