Switch to: Citations

Add references

You must login to add references.
  1. Gödel's Theorem: An Incomplete Guide to its Use and Abuse.Torkel Franzén - 2005 - A K Peters.
    "Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Indispensability, the Testing of Mathematical Theories, and Provisional Realism.Jörgen Sjögren - 2011 - Polish Journal of Philosophy 5 (2):99-116.
    Mathematical concepts are explications, in Carnap's sense, of vague or otherwise non-clear concepts; mathematical theories have an empirical and a deductive component. From this perspective, I argue that the empirical component of a mathematical theory may be tested together with the fruitfulness of its explications. Using these ideas, I furthermore give an argument for mathematical realism, based on the indispensability argument combined with a weakened version of confirmational holism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Justified Concepts and the Limits of the Conceptual Approach to the A Priori.Darren Bradley - 2011 - Croatian Journal of Philosophy 11 (3):267-274.
    Carrie Jenkins (2005, 2008) has developed a theory of the a priori that she claims solves the problem of how justification regarding our concepts can give us justification regarding the world. She claims that concepts themselves can be justified, and that beliefs formed by examining such concepts can be justified a priori. I object that we can have a priori justified beliefs with unjustified concepts if those beliefs have no existential import. I then argue that only beliefs without existential import (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Grounding Concepts: An Empirical Basis for Arithmetical Knowledge.Carrie Jenkins - 2008 - Oxford, England: Oxford University Press.
    Carrie Jenkins presents a new account of arithmetical knowledge, which manages to respect three key intuitions: a priorism, mind-independence realism, and empiricism. Jenkins argues that arithmetic can be known through the examination of empirically grounded concepts, non-accidentally accurate representations of the mind-independent world.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Grounding Concepts: The Problem of Composition.Gábor Forrai - 2011 - Philosophia 39 (4):721-731.
    In a recent book C.S. Jenkins proposes a theory of arithmetical knowledge which reconciles realism about arithmetic with the a priori character of our knowledge of it. Her basic idea is that arithmetical concepts are grounded in experience and it is through experience that they are connected to reality. I argue that the account fails because Jenkins’s central concept, the concept for grounding, is inadequate. Grounding as she defines it does not suffice for realism, and by revising the definition we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Logical foundations of probability.Rudolf Carnap - 1950 - Chicago]: Chicago University of Chicago Press.
    APA PsycNET abstract: This is the first volume of a two-volume work on Probability and Induction. Because the writer holds that probability logic is identical with inductive logic, this work is devoted to philosophical problems concerning the nature of probability and inductive reasoning. The author rejects a statistical frequency basis for probability in favor of a logical relation between two statements or propositions. Probability "is the degree of confirmation of a hypothesis (or conclusion) on the basis of some given evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   881 citations  
  • The two concepts of probability: The problem of probability.Rudolf Carnap - 1945 - Philosophy and Phenomenological Research 5 (4):513-532.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Review of C. S. Jenkins, Grounding Concepts: An Empirical Basis for Arithmetical Knowledge[REVIEW]Neil Tennant - 2010 - Philosophia Mathematica 18 (3):360-367.
    This book is written so as to be ‘accessible to philosophers without a mathematical background’. The reviewer can assure the reader that this aim is achieved, even if only by focusing throughout on just one example of an arithmetical truth, namely ‘7+5=12’. This example’s familiarity will be reassuring; but its loneliness in this regard will not. Quantified propositions — even propositions of Goldbach type — are below the author’s radar.The author offers ‘a new kind of arithmetical epistemology’, one which ‘respects (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Logical Foundations of Probability.Rudolf Carnap - 1950 - Mind 62 (245):86-99.
    Download  
     
    Export citation  
     
    Bookmark   882 citations  
  • Mathematical Thought from Ancient to Modern Times.M. Kline - 1978 - British Journal for the Philosophy of Science 29 (1):68-87.
    Download  
     
    Export citation  
     
    Bookmark   161 citations  
  • (1 other version)The Logical Foundations of Probability. [REVIEW]Rudolf Carnap - 1950 - Journal of Philosophy 60 (13):362-364.
    Download  
     
    Export citation  
     
    Bookmark   564 citations  
  • Concept grounding and knowledge of set theory.Jeffrey W. Roland - 2010 - Philosophia 38 (1):179-193.
    C. S. Jenkins has recently proposed an account of arithmetical knowledge designed to be realist, empiricist, and apriorist: realist in that what’s the case in arithmetic doesn’t rely on us being any particular way; empiricist in that arithmetic knowledge crucially depends on the senses; and apriorist in that it accommodates the time-honored judgment that there is something special about arithmetical knowledge, something we have historically labeled with ‘a priori’. I’m here concerned with the prospects for extending Jenkins’s account beyond arithmetic—in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Knowledge of arithmetic.C. S. Jenkins - 2005 - British Journal for the Philosophy of Science 56 (4):727-747.
    The goal of the research programme I describe in this article is a realist epistemology for arithmetic which respects arithmetic's special epistemic status (the status usually described as a prioricity) yet accommodates naturalistic concerns by remaining fundamentally empiricist. I argue that the central claims which would allow us to develop such an epistemology are (i) that arithmetical truths are known through an examination of our arithmetical concepts; (ii) that (at least our basic) arithmetical concepts are accurate mental representations of elements (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Aristotle’s Philosophy of Mathematics.Jonathan Lear - 1982 - Philosophical Review 91 (2):161-192.
    Whether aristotle wrote a work on mathematics as he did on physics is not known, and sources differ. this book attempts to present the main features of aristotle's philosophy of mathematics. methodologically, the presentation is based on aristotle's "posterior analytics", which discusses the nature of scientific knowledge and procedure. concerning aristotle's views on mathematics in particular, they are presented with the support of numerous references to his extant works. his criticism of his predecessors is added at the end.
    Download  
     
    Export citation  
     
    Bookmark   56 citations