Switch to: References

Add citations

You must login to add citations.
  1. The Logical and Philosophical Foundations for the Possibility of True Contradictions.Ben Martin - 2014 - Dissertation, University College London
    The view that contradictions cannot be true has been part of accepted philosophical theory since at least the time of Aristotle. In this regard, it is almost unique in the history of philosophy. Only in the last forty years has the view been systematically challenged with the advent of dialetheism. Since Graham Priest introduced dialetheism as a solution to certain self-referential paradoxes, the possibility of true contradictions has been a live issue in the philosophy of logic. Yet, despite the arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Mathematical Roots of Semantic Analysis.Axel Arturo Barcelo Aspeitia - manuscript
    Semantic analysis in early analytic philosophy belongs to a long tradition of adopting geometrical methodologies to the solution of philosophical problems. In particular, it adapts Descartes’ development of formalization as a mechanism of analytic representation, for its application in natural language semantics. This article aims to trace the mathematical roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal character of modern analysis introduced by Descartes. The goal is to identify the particular conception of “form” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • German Idealism and the Origins of Pure Mathematics: Riemann, Dedekind, Cantor.Ehsan Karimi Torshizi - 2021 - Journal of Philosophical Investigations 15 (36):171-188.
    When it comes to the relation of modern mathematics and philosophy, most people tend to think of the three major schools of thought—i.e. logicism, formalism, and intuitionism—that emerged as profound researches on the foundations and nature of mathematics in the beginning of the 20th century and have shaped the dominant discourse of an autonomous discipline of analytic philosophy, generally known under the rubric of “philosophy of mathematics” since then. What has been completely disregarded by these philosophical attitudes, these foundational researches (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Applied versus situated mathematics in ancient Egypt: bridging the gap between theory and practice.Sandra Visokolskis & Héctor Horacio Gerván - 2022 - European Journal for Philosophy of Science 12 (1):1-30.
    This historiographical study aims at introducing the category of “situated mathematics” to the case of Ancient Egypt. However, unlike Situated Learning Theory, which is based on ethnographic relativity, in this paper, the goal is to analyze a mathematical craft knowledge based on concrete particulars and case studies, which is ubiquitous in all human activity, and which even covers, as a specific case, the Hellenistic style, where theoretical constructs do not stand apart from practice, but instead remain grounded in it.The historiographic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation in Practice.Ellen Lehet - 2021 - Axiomathes 31 (5):553-574.
    The connection between understanding and explanation has recently been of interest to philosophers. Inglis and Mejía-Ramos (Synthese, 2019) propose that within mathematics, we should accept a functional account of explanation that characterizes explanations as those things that produce understanding. In this paper, I start with the assumption that this view of mathematical explanation is correct and consider what we can consequently learn about mathematical explanation. I argue that this view of explanation suggests that we should shift the question of explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege on intuition and objecthood in projective geometry.Günther Eder - 2021 - Synthese 199 (3-4):6523-6561.
    In recent years, several scholars have been investigating Frege’s mathematical background, especially in geometry, in order to put his general views on mathematics and logic into proper perspective. In this article I want to continue this line of research and study Frege’s views on geometry in their own right by focussing on his views on a field which occupied center stage in nineteenth century geometry, namely, projective geometry.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart (eds.), Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The great French mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Conventionalism in Reid’s ‘Geometry of Visibles’.Edward Slowik - 2003 - Studies in History and Philosophy of Science 34:467-489.
    The role of conventions in the formulation of Thomas Reid’s theory of the geometry of vision, which he calls the “geometry of visibles”, is the subject of this investigation. In particular, we will examine the work of N. Daniels and R. Angell who have alleged that, respectively, Reid’s “geometry of visibles” and the geometry of the visual field are non-Euclidean. As will be demonstrated, however, the construction of any geometry of vision is subject to a choice of conventions regarding the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hidden lemmas in Euler's summation of the reciprocals of the squares.Curtis Tuckey & Mark McKinzie - 1997 - Archive for History of Exact Sciences 51 (1):29-57.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cognitive Unity of Thales’ Mathematics.Ladislav Kvasz - 2020 - Foundations of Science 25 (3):737-753.
    The aim of the paper is to argue for the cognitive unity of the mathematical results ascribed by ancient authors to Thales. These results are late ascriptions and so it is difficult to say anything certain about them on philological grounds. I will seek characteristic features of the cognitive unity of the mathematical results ascribed to Thales by comparing them with Galilean physics. This might seem at a first sight a rather unusual move. Nevertheless, I suggest viewing the process of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In Search of Intuition.Elijah Chudnoff - 2019 - Australasian Journal of Philosophy 98 (3):465-480.
    What are intuitions? Stereotypical examples may suggest that they are the results of common intellectual reflexes. But some intuitions defy the stereotype: there are hard-won intuitions that take d...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Desargues' Method of Perspective Its Mathematical Content, Its Connection to Other Perspective Methods and Its Relation to Desargues' Ideas on Projective Geometry.Kirsti Andersen - 1991 - Centaurus 34 (1):44-91.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Historical Objections Against the Number Line.Albrecht Heeffer - 2011 - Science & Education 20 (9):863-880.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Riemann and the theory of electrical phenomena: Nobili’s rings.Thomas Archibald - 1991 - Centaurus 34 (3):247--271.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert, Duality, and the Geometrical Roots of Model Theory.Günther Eder & Georg Schiemer - 2018 - Review of Symbolic Logic 11 (1):48-86.
    The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’sFoundations of Geometry(1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • ‘+1’: Scholem and the Paradoxes of the Infinite.Julia Ng - 2014 - Rivista Italiana di Filosofia del Linguaggio 8 (2):196-210.
    This article draws on several crucial and unpublished manuscripts from the Scholem Archive in exploration of Gershom Scholem's youthful statements on mathematics and its relation to extra-mathematical facts and, more broadly, to a concept of history that would prove to be consequential for Walter Benjamin's own thinking on "messianism" and a "futuristic politics." In context of critiquing the German Youth Movement's subsumption of active life to the nationalistic conditions of the "earth" during the First World War, Scholem turns to mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Minimal Axioms for Peirce's Triadic Logic.Atwell R. Turquette - 1976 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 22 (1):169-176.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Semiotic Scaffolding in Mathematics.Mikkel Willum Johansen & Morten Misfeldt - 2015 - Biosemiotics 8 (2):325-340.
    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Incomplete understanding of complex numbers Girolamo Cardano: a case study in the acquisition of mathematical concepts.Denis Buehler - 2014 - Synthese 191 (17):4231-4252.
    In this paper, I present the case of the discovery of complex numbers by Girolamo Cardano. Cardano acquires the concepts of (specific) complex numbers, complex addition, and complex multiplication. His understanding of these concepts is incomplete. I show that his acquisition of these concepts cannot be explained on the basis of Christopher Peacocke’s Conceptual Role Theory of concept possession. I argue that Strong Conceptual Role Theories that are committed to specifying a set of transitions that is both necessary and sufficient (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Merleau-Ponty and the transcendental problem of bodily agency.Rasmus Thybo Jensen - 2013 - In Rasmus Thybo Jensen & Dermot Moran (eds.), The Phenomenology of Embodied Subjectivity, Contributions to Phenomenology 71. Springer. pp. 43-61.
    I argue that we find the articulation of a problem concerning bodily agency in the early works of the Merleau-Ponty which he explicates as analogous to what he explicitly calls the problem of perception. The problem of perception is the problem of seeing how we can have the object given in person through it perspectival appearances. The problem concerning bodily agency is the problem of seeing how our bodily movements can be the direct manifestation of a person’s intentions in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Two Complementary Types of Total Time Derivative in Classical Field Theories and Maxwell’s Equations.R. Smirnov-Rueda - 2005 - Foundations of Physics 35 (10):1695-1723.
    Close insight into mathematical and conceptual structure of classical field theories shows serious inconsistencies in their common basis. In other words, we claim in this work to have come across two severe mathematical blunders in the very foundations of theoretical hydrodynamics. One of the defects concerns the traditional treatment of time derivatives in Eulerian hydrodynamic description. The other one resides in the conventional demonstration of the so-called Convection Theorem. Both approaches are thought to be necessary for cross-verification of the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • La teoría de los invariantes y el espacio intuitivo en Der Raum de Rudolf Carnap.Álvaro J. Peláez Cedrés - 2008 - Análisis Filosófico 28 (2):175-203.
    La consecuencia más difundida de la revolución en la geometría del siglo XIX es aquella que afirma que después de dichos cambios ya nada quedaría de la vieja noción de espacio como "forma de la intuición sensible", ni de la geometría como "condición trascendental" de la posibilidad de la experiencia. Este artículo se ocupa del intento de Rudolf Carnap por articular una concepción del espacio intuitivo que, al tiempo que se mantiene dentro del paradigma kantiano se hace eco de algunos (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Penelope Maddy. Defending the Axioms: On the Philosophical Foundations of Set Theory. Oxford: Oxford University Press, 2011. ISBN 978-0-19-959618-8 (hbk); 978-0-19-967148-9 (pbk). Pp. x + 150. [REVIEW]C. McLarty - 2013 - Philosophia Mathematica 21 (3):385-392.
    Download  
     
    Export citation  
     
    Bookmark  
  • Beauty in science: a new model of the role of aesthetic evaluations in science. [REVIEW]Ulianov Montano - 2013 - European Journal for Philosophy of Science 3 (2):133-156.
    In Beauty and Revolution in Science, James McAllister advances a rationalistic picture of science in which scientific progress is explained in terms of aesthetic evaluations of scientific theories. Here I present a new model of aesthetic evaluations by revising McAllister’s core idea of the aesthetic induction. I point out that the aesthetic induction suffers from anomalies and theoretical inconsistencies and propose a model free from such problems. The new model is based, on the one hand, on McAllister’s original model and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Idealization and external symbolic storage: the epistemic and technical dimensions of theoretic cognition.Peter Woelert - 2012 - Phenomenology and the Cognitive Sciences 11 (3):335-366.
    This paper explores some of the constructive dimensions and specifics of human theoretic cognition, combining perspectives from (Husserlian) genetic phenomenology and distributed cognition approaches. I further consult recent psychological research concerning spatial and numerical cognition. The focus is on the nexus between the theoretic development of abstract, idealized geometrical and mathematical notions of space and the development and effective use of environmental cognitive support systems. In my discussion, I show that the evolution of the theoretic cognition of space apparently follows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pānini and Euclid: Reflections on Indian Geometry. [REVIEW]Johannes Bronkhorst - 2001 - Journal of Indian Philosophy 29 (1/2):43-80.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Visualizing as a Means of Geometrical Discovery.Marcus Giaquinto - 1992 - Mind and Language 7 (4):382-401.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Methodological Practice and Complementary Concepts of Logical Consequence: Tarski's Model-Theoretic Consequence and Corcoran's Information-Theoretic Consequence.José M. Sagüillo - 2009 - History and Philosophy of Logic 30 (1):21-48.
    This article discusses two coextensive concepts of logical consequence that are implicit in the two fundamental logical practices of establishing validity and invalidity for premise-conclusion arguments. The premises and conclusion of an argument have information content (they ?say? something), and they have subject matter (they are ?about? something). The asymmetry between establishing validity and establishing invalidity has long been noted: validity is established through an information-processing procedure exhibiting a step-by-step deduction of the conclusion from the premise-set. Invalidity is established by (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categoricity.John Corcoran - 1980 - History and Philosophy of Logic 1 (1):187-207.
    After a short preface, the first of the three sections of this paper is devoted to historical and philosophic aspects of categoricity. The second section is a self-contained exposition, including detailed definitions, of a proof that every mathematical system whose domain is the closure of its set of distinguished individuals under its distinguished functions is categorically characterized by its induction principle together with its true atoms (atomic sentences and negations of atomic sentences). The third section deals with applications especially those (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Geometry and generality in Frege's philosophy of arithmetic.Jamie Tappenden - 1995 - Synthese 102 (3):319 - 361.
    This paper develops some respects in which the philosophy of mathematics can fruitfully be informed by mathematical practice, through examining Frege's Grundlagen in its historical setting. The first sections of the paper are devoted to elaborating some aspects of nineteenth century mathematics which informed Frege's early work. (These events are of considerable philosophical significance even apart from the connection with Frege.) In the middle sections, some minor themes of Grundlagen are developed: the relationship Frege envisions between arithmetic and geometry and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On the most open question in the history of mathematics: A discussion of Maddy.Adrian Riskin - 1994 - Philosophia Mathematica 2 (2):109-121.
    In this paper, I argue against Penelope Maddy's set-theoretic realism by arguing (1) that it is perfectly consistent with mathematical Platonism to deny that there is a fact of the matter concerning statements which are independent of the axioms of set theory, and that (2) denying this accords further that many contemporary Platonists assert that there is a fact of the matter because they are closet foundationalists, and that their brand of foundationalism is in radical conflict with actual mathematical practice.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Learning from questions on categorical foundations.Colin McLarty - 2005 - Philosophia Mathematica 13 (1):44-60.
    We can learn from questions as well as from their answers. This paper urges some things to learn from questions about categorical foundations for mathematics raised by Geoffrey Hellman and from ones he invokes from Solomon Feferman.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Proper classes.Penelope Maddy - 1983 - Journal of Symbolic Logic 48 (1):113-139.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Changes of language in the development of mathematics.Ladislav Kvasz - 2000 - Philosophia Mathematica 8 (1):47-83.
    The nature of changes in mathematics was discussed recently in Revolutions in Mathematics. The discussion was dominated by historical and sociological arguments. An obstacle to a philosophical analysis of this question lies in a discrepancy between our approach to formulas and to pictures. While formulas are understood as constituents of mathematical theories, pictures are viewed only as heuristic tools. Our idea is to consider the pictures contained in mathematical text, as expressions of a specific language. Thus we get formulas and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Abstraction in computer science.Timothy Colburn & Gary Shute - 2007 - Minds and Machines 17 (2):169-184.
    We characterize abstraction in computer science by first comparing the fundamental nature of computer science with that of its cousin mathematics. We consider their primary products, use of formalism, and abstraction objectives, and find that the two disciplines are sharply distinguished. Mathematics, being primarily concerned with developing inference structures, has information neglect as its abstraction objective. Computer science, being primarily concerned with developing interaction patterns, has information hiding as its abstraction objective. We show that abstraction through information hiding is a (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Towards the Highest Good: Endless Progress and Its Totality in Kant’s Moral Argument for the Postulate of Immortality.Nataliya Palatnik - 2022 - Journal of Transcendental Philosophy 3 (3):321-344.
    Kant’s moral proof of the postulate of immortality in the Critique of Practical Reason is often dismissed as a failed argument that trades on illicit conceptual shifts. I argue that Kant’s argument is more interesting and less problematic than is usually thought. I first examine its role in the second Critique’s Dialectic. I then point out that the standard interpretation, according to which the argument presupposes God’s intuitive grasp of the moral equivalence between the disposition to pursue holiness and its (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Historical Lifeworld of Event Ontology.Said Mikki -
    We develop a new understanding of the historical horizon of event ontology. Within the general area of the philosophy of nature, event ontology is a still emerging field of investigation in search for the ultimate materialist ontology of the world. While event ontology itself will not be explicated in full mathematical details here, our focus is on its conceptual interrelation with the dominant current of Idealism in Western thought approached by us as a problem in the history of ideas. Our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Charles L. Dodgson’s Work on Trigonometry.Francine F. Abeles - 2019 - Acta Baltica Historiae Et Philosophiae Scientiarum 7 (1):27-38.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege and the origins of model theory in nineteenth century geometry.Günther Eder - 2019 - Synthese 198 (6):5547-5575.
    The aim of this article is to contribute to a better understanding of Frege’s views on semantics and metatheory by looking at his take on several themes in nineteenth century geometry that were significant for the development of modern model-theoretic semantics. I will focus on three issues in which a central semantic idea, the idea of reinterpreting non-logical terms, gradually came to play a substantial role: the introduction of elements at infinity in projective geometry; the study of transfer principles, especially (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Kepler’s system of conics in Astronomiae pars optica.Andrea Del Centina - 2016 - Archive for History of Exact Sciences 70 (6):567-589.
    This is an attempt to explain Kepler’s invention of the first “non-cone-based” system of conics, and to put it into a historical perspective.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Poncelet’s porism: a long story of renewed discoveries, I.Andrea Del Centina - 2016 - Archive for History of Exact Sciences 70 (1):1-122.
    In 1813, J.-V. Poncelet discovered that if there exists a polygon of n-sides, which is inscribed in a given conic and circumscribed about another conic, then infinitely many such polygons exist. This theorem became known as Poncelet’s porism, and the related polygons were called Poncelet’s polygons. In this article, we trace the history of the research about the existence of such polygons, from the “prehistorical” work of W. Chapple, of the middle of the eighteenth century, to the modern approach of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Thales's sure path.David Sherry - 1999 - Studies in History and Philosophy of Science Part A 30 (4):621-650.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The foundations of mathematics from a historical viewpoint.Antonino Drago - 2015 - Epistemologia 38 (1):133-151.
    A new hypothesis on the basic features characterising the Foundations of Mathematics is suggested. By means of them the entire historical development of Mathematics before the 20th Century is summarised through a table. Also the several programs, launched around the year 1900, on the Foundations of Mathematics are characterised by a corresponding table. The major difficulty that these programs met was to recognize an alternative to the basic feature of the deductive organization of a theory - more precisely, to Hilbert’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation