Switch to: Citations

Add references

You must login to add references.
  1. Probing the quantitative–qualitative divide in probabilistic reasoning.Duligur Ibeling, Thomas Icard, Krzysztof Mierzewski & Milan Mossé - 2024 - Annals of Pure and Applied Logic 175 (9):103339.
    This paper explores the space of (propositional) probabilistic logical languages, ranging from a purely `qualitative' comparative language to a highly `quantitative' language involving arbitrary polynomials over probability terms. While talk of qualitative vs. quantitative may be suggestive, we identify a robust and meaningful boundary in the space by distinguishing systems that encode (at most) additive reasoning from those that encode additive and multiplicative reasoning. The latter includes not only languages with explicit multiplication but also languages expressing notions of dependence and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
    Download  
     
    Export citation  
     
    Bookmark   599 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • (1 other version)Undecidable Theories.Alfred Tarski, Andrzej Mostowski & Raphael M. Robinson - 1953 - Philosophy 30 (114):278-279.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • A note on definability in fragments of arithmetic with free unary predicates.Stanislav O. Speranski - 2013 - Archive for Mathematical Logic 52 (5-6):507-516.
    We carry out a study of definability issues in the standard models of Presburger and Skolem arithmetics (henceforth referred to simply as Presburger and Skolem arithmetics, for short, because we only deal with these models, not the theories, thus there is no risk of confusion) supplied with free unary predicates—which are strongly related to definability in the monadic SOA (second-order arithmetic) without × or + , respectively. As a consequence, we obtain a very direct proof for ${\Pi^1_1}$ -completeness of Presburger, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Some new results on decidability for elementary algebra and geometry.Robert M. Solovay, R. D. Arthan & John Harrison - 2012 - Annals of Pure and Applied Logic 163 (12):1765-1802.
    We carry out a systematic study of decidability for theories of real vector spaces, inner product spaces, and Hilbert spaces and of normed spaces, Banach spaces and metric spaces, all formalized using a 2-sorted first-order language. The theories for list turn out to be decidable while the theories for list are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic.We find that the purely universal and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations