Switch to: References

Add citations

You must login to add citations.
  1. The Tarski–Lindenbaum algebra of the class of strongly constructivizable models with $$\omega $$-stable theories.Mikhail Peretyat’kin - forthcoming - Archive for Mathematical Logic:1-12.
    We study the class of all strongly constructivizable models having \(\omega \) -stable theories in a fixed finite rich signature. It is proved that the Tarski–Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean \(\Sigma ^1_1\) -algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of all Boolean \(\Sigma ^1_1\) -algebras. This gives a characterization to the Tarski-Lindenbaum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An ‘elementary’ perspective on reasoning about probability spaces.Stanislav O. Speranski - forthcoming - Logic Journal of the IGPL.
    This paper is concerned with a two-sorted probabilistic language, denoted by $\textsf{QPL}$, which contains quantifiers over events and over reals, and can be viewed as an elementary language for reasoning about probability spaces. The fragment of $\textsf{QPL}$ containing only quantifiers over reals is a variant of the well-known ‘polynomial’ language from Fagin et al. (1990, Inform. Comput., 87, 78–128). We shall prove that the $\textsf{QPL}$-theory of the Lebesgue measure on $\left [ 0, 1 \right ]$ is decidable, and moreover, all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semantics of Computable Physical Models.Matthew P. Szudzik - 2023 - Studia Logica 111 (5):779-819.
    This article reformulates the theory of computable physical models, previously introduced by the author, as a branch of applied model theory in first-order logic. It provides a semantic approach to the philosophy of science that incorporates aspects of operationalism and Popper’s degrees of falsifiability.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Decision Problem for Effective Procedures.Nathan Salmón - 2023 - Logica Universalis 17 (2):161-174.
    The “somewhat vague, intuitive” notion from computability theory of an effective procedure (method) or algorithm can be fairly precisely defined even if it is not sufficiently formal and precise to belong to mathematics proper (in a narrow sense)—and even if (as many have asserted) for that reason the Church–Turing thesis is unprovable. It is proved logically that the class of effective procedures is not decidable, i.e., that no effective procedure is possible for ascertaining whether a given procedure is effective. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective Procedures.Nathan Salmon - 2023 - Philosophies 8 (2):27.
    This is a non-technical version of "The Decision Problem for Effective Procedures." The “somewhat vague, intuitive” notion from computability theory of an effective procedure (method) or algorithm can be fairly precisely defined, even if it does not have a purely mathematical definition—and even if (as many have asserted) for that reason, the Church–Turing thesis (that the effectively calculable functions on natural numbers are exactly the general recursive functions), cannot be proved. However, it is logically provable from the notion of an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchical Incompleteness Results for Arithmetically Definable Extensions of Fragments of Arithmetic.Rasmus Blanck - 2021 - Review of Symbolic Logic 14 (3):624-644.
    There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “$\mathrm {T}$is$\Sigma _n$-ill” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition).Bhupinder Singh Anand - 2024 - Mumbai: DBA Publishing (Second Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Incomparability in local structures of s -degrees and Q -degrees.Irakli Chitaia, Keng Meng Ng, Andrea Sorbi & Yue Yang - 2020 - Archive for Mathematical Logic 59 (7-8):777-791.
    We show that for every intermediate \ s-degree there exists an incomparable \ s-degree. As a consequence, for every intermediate \ Q-degree there exists an incomparable \ Q-degree. We also show how these results can be applied to provide proofs or new proofs of upper density results in local structures of s-degrees and Q-degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Nature of Appearance in Kant’s Transcendentalism: A Seman- tico-Cognitive Analysis.Sergey L. Katrechko - 2018 - Kantian Journal 37 (3):41-55.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Elementary theories and hereditary undecidability for semilattices of numberings.Nikolay Bazhenov, Manat Mustafa & Mars Yamaleev - 2019 - Archive for Mathematical Logic 58 (3-4):485-500.
    A major theme in the study of degree structures of all types has been the question of the decidability or undecidability of their first order theories. This is a natural and fundamental question that is an important goal in the analysis of these structures. In this paper, we study decidability for theories of upper semilattices that arise from the theory of numberings. We use the following approach: given a level of complexity, say \, we consider the upper semilattice \ of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Equivalences for Truth Predicates.Carlo Nicolai - 2017 - Review of Symbolic Logic 10 (2):322-356.
    One way to study and understand the notion of truth is to examine principles that we are willing to associate with truth, often because they conform to a pre-theoretical or to a semi-formal characterization of this concept. In comparing different collections of such principles, one requires formally precise notions of inter-theoretic reduction that are also adequate to compare these conceptual aspects. In this work I study possible ways to make precise the relation of conceptual equivalence between notions of truth associated (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Every polynomial-time 1-degree collapses if and only if P = PSPACE.Stephen A. Fenner, Stuart A. Kurtz & James S. Royer - 2004 - Journal of Symbolic Logic 69 (3):713-741.
    A set A is m-reducible to B if and only if there is a polynomial-time computable function f such that, for all x, x∈ A if and only if f ∈ B. Two sets are: 1-equivalent if and only if each is m-reducible to the other by one-one reductions; p-invertible equivalent if and only if each is m-reducible to the other by one-one, polynomial-time invertible reductions; and p-isomorphic if and only if there is an m-reduction from one set to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetical Analogues of Productive and Universal Sets.Bruce M. Horowitz - 1982 - Mathematical Logic Quarterly 28 (14-18):203-210.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Isomorphism Type of Arithmetically Productive Sets.Bruce M. Horowitz - 1982 - Mathematical Logic Quarterly 28 (14-18):211-214.
    Download  
     
    Export citation  
     
    Bookmark  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Demuth’s path to randomness.Antonín Kučera, André Nies & Christopher P. Porter - 2015 - Bulletin of Symbolic Logic 21 (3):270-305.
    Osvald Demuth studied constructive analysis from the viewpoint of the Russian school of constructive mathematics. In the course of his work he introduced various notions of effective null set which, when phrased in classical language, yield a number of major algorithmic randomness notions. In addition, he proved several results connecting constructive analysis and randomness that were rediscovered only much later.In this paper, we trace the path that took Demuth from his constructivist roots to his deep and innovative work on the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Field’s logic of truth.Vann McGee - 2010 - Philosophical Studies 147 (3):421-432.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Effectively Computable Operators.John P. Helm - 1971 - Mathematical Logic Quarterly 17 (1):231-244.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetical Reducibilities I.Alan L. Selman - 1971 - Mathematical Logic Quarterly 17 (1):335-350.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Arithmetical Reducibilities II.Alan L. Selman - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (4-6):83-92.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • System Functions and Their Decision Problems.M. B. Thuraisingham - 1984 - Mathematical Logic Quarterly 30 (7-8):119-128.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Boolean Algebras and their Recursive Completions.E. W. Madison - 1985 - Mathematical Logic Quarterly 31 (31-34):481-486.
    Download  
     
    Export citation  
     
    Bookmark  
  • Linear Order Types of Nonrecursive Presentability.Dev Kumar Roy - 1985 - Mathematical Logic Quarterly 31 (31-34):495-501.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The nonalgorithmic mind.Roger Penrose - 1990 - Behavioral and Brain Sciences 13 (4):692-705.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computability, consciousness, and algorithms.Robert Wilensky - 1990 - Behavioral and Brain Sciences 13 (4):690-691.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Algorithms and physical laws.Franklin Boyle - 1990 - Behavioral and Brain Sciences 13 (4):656-657.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing the thinkable.David J. Chalmers - 1990 - Behavioral and Brain Sciences 13 (4):658-659.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perceptive questions about computation and cognition.Jon Doyle - 1990 - Behavioral and Brain Sciences 13 (4):661-661.
    Download  
     
    Export citation  
     
    Bookmark  
  • Physics of brain-mind interaction.John C. Eccles - 1990 - Behavioral and Brain Sciences 13 (4):662-663.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong AI and the problem of “second-order” algorithms.Gerd Gigerenzer - 1990 - Behavioral and Brain Sciences 13 (4):663-664.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why you'll never know whether Roger Penrose is a computer.Clark Glymour & Kevin Kelly - 1990 - Behavioral and Brain Sciences 13 (4):666-667.
    Download  
     
    Export citation  
     
    Bookmark  
  • Penrose's Platonism.James Higginbotham - 1990 - Behavioral and Brain Sciences 13 (4):667-668.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ways and means.Adam V. Reed - 1987 - Behavioral and Brain Sciences 10 (3):488-489.
    Download  
     
    Export citation  
     
    Bookmark  
  • The study of cognition and instructional design: Mutual nurturance.Robert Glaser - 1987 - Behavioral and Brain Sciences 10 (3):483-484.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Cupping and noncupping in the enumeration degrees of ∑20 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    We prove the following three theorems on the enumeration degrees of ∑20 sets. Theorem A: There exists a nonzero noncuppable ∑20 enumeration degree. Theorem B: Every nonzero Δ20enumeration degree is cuppable to 0′e by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Δ20 enumeration degree with the anticupping property.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • System function languages.M. B. Thuraisingham - 1993 - Mathematical Logic Quarterly 39 (1):357-366.
    In this paper we define the concept of a system function language which is a language generated by a system function. We identify system function languages with recursively enumerable sets which are non-simple and co-infinite. We then define restricted system function languages and identify them with recursive sets which are co-infinite. Finally we state and prove some independence and dependence relationships between system function languages and some of the more well-known decision problems. MSC: 03D05, 03D20, 03D25.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Fixed points and diagonal method.Maurizio Negri - 1990 - Mathematical Logic Quarterly 36 (4):319-329.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On the Topological Size of Sets of Random Strings.M. Zimand - 1986 - Mathematical Logic Quarterly 32 (6):81-88.
    Download  
     
    Export citation  
     
    Bookmark  
  • Subsystems of second-order arithmetic between RCA0 and WKL0.Carl Mummert - 2008 - Archive for Mathematical Logic 47 (3):205-210.
    We study the Lindenbaum algebra ${\fancyscript{A}}$ (WKL o, RCA o) of sentences in the language of second-order arithmetic that imply RCA o and are provable from WKL o. We explore the relationship between ${\Sigma^1_1}$ sentences in ${\fancyscript{A}}$ (WKL o, RCA o) and ${\Pi^0_1}$ classes of subsets of ω. By applying a result of Binns and Simpson (Arch. Math. Logic 43(3), 399–414, 2004) about ${\Pi^0_1}$ classes, we give a specific embedding of the free distributive lattice with countably many generators into ${\fancyscript{A}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effectively closed sets and enumerations.Paul Brodhead & Douglas Cenzer - 2008 - Archive for Mathematical Logic 46 (7-8):565-582.
    An effectively closed set, or ${\Pi^{0}_{1}}$ class, may viewed as the set of infinite paths through a computable tree. A numbering, or enumeration, is a map from ω onto a countable collection of objects. One numbering is reducible to another if equality holds after the second is composed with a computable function. Many commonly used numberings of ${\Pi^{0}_{1}}$ classes are shown to be mutually reducible via a computable permutation. Computable injective numberings are given for the family of ${\Pi^{0}_{1}}$ classes and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effectively and Noneffectively Nowhere Simple Sets.Valentina S. Harizanov - 1996 - Mathematical Logic Quarterly 42 (1):241-248.
    R. Shore proved that every recursively enumerable set can be split into two nowhere simple sets. Splitting theorems play an important role in recursion theory since they provide information about the lattice ϵ of all r. e. sets. Nowhere simple sets were further studied by D. Miller and J. Remmel, and we generalize some of their results. We characterize r. e. sets which can be split into two effectively nowhere simple sets, and r. e. sets which can be split into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Real Number Structure that is Effectively Categorical.Peter Hertling - 1999 - Mathematical Logic Quarterly 45 (2):147-182.
    On countable structures computability is usually introduced via numberings. For uncountable structures whose cardinality does not exceed the cardinality of the continuum the same can be done via representations. Which representations are appropriate for doing real number computations? We show that with respect to computable equivalence there is one and only one equivalence class of representations of the real numbers which make the basic operations and the infinitary normed limit operator computable. This characterizes the real numbers in terms of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Nondeterminism, Enumeration Reducibility and Polynomial Bounds.Kate Copestake - 1997 - Mathematical Logic Quarterly 43 (3):287-310.
    Enumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e‐reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non‐deterministic polynomial time reducibility. We define the polynomial time e‐degrees as the equivalence classes under this reducibility and investigate their structure on the recursive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Σ1 1 equivalence relations over the natural numbers.Ekaterina B. Fokina & Sy-David Friedman - 2012 - Mathematical Logic Quarterly 58 (1-2):113-124.
    We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ11 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner DePauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics. Dordrecht, Boston and London: Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Role of the Frame Problem in Fodor's Modularity Thesis.Eric Dietrich & Chris Fields - 1996 - In Kenneth M. Ford & Zenon W. Pylyshyn (eds.), The Robot's Dilemma Revisited: The Frame Problem in Artificial Intelligence. Ablex.
    It is shown that the Fodor's interpretation of the frame problem is the central indication that his version of the Modularity Thesis is incompatible with computationalism. Since computationalism is far more plausible than this thesis, the latter should be rejected.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A survey of Mučnik and Medvedev degrees.Peter G. Hinman - 2012 - Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Download  
     
    Export citation  
     
    Bookmark   10 citations