Switch to: Citations

Add references

You must login to add references.
  1. Relating the bounded arithmetic and polynomial time hierarchies.Samuel R. Buss - 1995 - Annals of Pure and Applied Logic 75 (1-2):67-77.
    The bounded arithmetic theory S2 is finitely axiomatized if and only if the polynomial hierarchy provably collapses. If T2i equals S2i + 1 then T2i is equal to S2 and proves that the polynomial time hierarchy collapses to ∑i + 3p, and, in fact, to the Boolean hierarchy over ∑i + 2p and to ∑i + 1p/poly.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Structure and definability in general bounded arithmetic theories.Chris Pollett - 1999 - Annals of Pure and Applied Logic 100 (1-3):189-245.
    The bounded arithmetic theories R2i, S2i, and T2i are closely connected with complexity theory. This paper is motivated by the questions: what are the Σi+1b-definable multifunctions of R2i? and when is one theory conservative over another? To answer these questions we consider theories , and where induction is restricted to prenex formulas. We also define which has induction up to the 0 or 1-ary L2-terms in the set τ. We show and and for . We show that the -multifunctions of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Bounded arithmetic and the polynomial hierarchy.Jan Krajíček, Pavel Pudlák & Gaisi Takeuti - 1991 - Annals of Pure and Applied Logic 52 (1-2):143-153.
    T i 2 = S i +1 2 implies ∑ p i +1 ⊆ Δ p i +1 ⧸poly. S 2 and IΔ 0 ƒ are not finitely axiomatizable. The main tool is a Herbrand-type witnessing theorem for ∃∀∃ П b i -formulas provable in T i 2 where the witnessing functions are □ p i +1.
    Download  
     
    Export citation  
     
    Bookmark   46 citations