Switch to: References

Add citations

You must login to add citations.
  1. Feasibly constructive proofs of succinct weak circuit lower bounds.Moritz Müller & Ján Pich - 2020 - Annals of Pure and Applied Logic 171 (2):102735.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Circuit lower bounds in bounded arithmetics.Ján Pich - 2015 - Annals of Pure and Applied Logic 166 (1):29-45.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information in propositional proofs and algorithmic proof search.Jan Krajíček - 2022 - Journal of Symbolic Logic 87 (2):852-869.
    We study from the proof complexity perspective the proof search problem : •Is there an optimal way to search for propositional proofs?We note that, as a consequence of Levin’s universal search, for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists.To characterize precisely the time proof search algorithms need for individual formulas (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polynomial time ultrapowers and the consistency of circuit lower bounds.Jan Bydžovský & Moritz Müller - 2020 - Archive for Mathematical Logic 59 (1-2):127-147.
    A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory \ of all polynomial time functions. Generalizing a theorem of Hirschfeld :111–126, 1975), we show that every countable model of \ is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler Ultrafilters across (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the correspondence between arithmetic theories and propositional proof systems – a survey.Olaf Beyersdorff - 2009 - Mathematical Logic Quarterly 55 (2):116-137.
    The purpose of this paper is to survey the correspondence between bounded arithmetic and propositional proof systems. In addition, it also contains some new results which have appeared as an extended abstract in the proceedings of the conference TAMC 2008 [11].Bounded arithmetic is closely related to propositional proof systems; this relation has found many fruitful applications. The aim of this paper is to explain and develop the general correspondence between propositional proof systems and arithmetic theories, as introduced by Krajíček and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Do there exist complete sets for promise classes?Olaf Beyersdorff & Zenon Sadowski - 2011 - Mathematical Logic Quarterly 57 (6):535-550.
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class equation image?For concrete languages L and concrete promise classes equation image , these questions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new characterizations for Q1 and Q2 that apply to almost all promise classes equation image and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Induction rules in bounded arithmetic.Emil Jeřábek - 2020 - Archive for Mathematical Logic 59 (3-4):461-501.
    We study variants of Buss’s theories of bounded arithmetic axiomatized by induction schemes disallowing the use of parameters, and closely related induction inference rules. We put particular emphasis on \ induction schemes, which were so far neglected in the literature. We present inclusions and conservation results between the systems and \ of a new form), results on numbers of instances of the axioms or rules, connections to reflection principles for quantified propositional calculi, and separations between the systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation