Switch to: Citations

Add references

You must login to add references.
  1. The Kunen-Miller chart (lebesgue measure, the baire property, Laver reals and preservation theorems for forcing).Haim Judah & Saharon Shelah - 1990 - Journal of Symbolic Logic 55 (3):909-927.
    In this work we give a complete answer as to the possible implications between some natural properties of Lebesgue measure and the Baire property. For this we prove general preservation theorems for forcing notions. Thus we answer a decade-old problem of J. Baumgartner and answer the last three open questions of the Kunen-Miller chart about measure and category. Explicitly, in \S1: (i) We prove that if we add a Laver real, then the old reals have outer measure one. (ii) We (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)More on ideals with simple forcing notions.M. Gitik & S. Shelah - 1993 - Annals of Pure and Applied Logic 59 (3):219-238.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)More on simple forcing notions and forcings with ideals.M. Gitik & S. Shelah - 1993 - Annals of Pure and Applied Logic 59 (3):219-238.
    It is shown that cardinals below a real-valued measurable cardinal can be split into finitely many intervals so that the powers of cardinals from the same interval are the same. This generalizes a theorem of Prikry [9]. Suppose that the forcing with a κ-complete ideal over κ is isomorphic to the forcing of λ-Cohen or random reals. Then for some τ<κ, λτ2κ and λ2<κ implies that 2κ=2τ= cov. In particular, if 2κ<κ+ω, then λ=2κ. This answers a question from [3]. If (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)A simple maximality principle.Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):527-550.
    In this paper, following an idea of Christophe Chalons. I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence varphi holding in some forcing extension $V^P$ and all subsequent extensions $V^{P\ast Q}$ holds already in V. It follows, in fact, that such sentences must also hold in all forcing extensions of V. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\lozenge \square \varphi) \Rightarrow \square \varphi$ , and is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations