Switch to: Citations

Add references

You must login to add references.
  1. Extending Ourselves: Computational Science, Empiricism, and Scientific Method.Paul Humphreys - 2004 - New York, US: Oxford University Press.
    Computational methods such as computer simulations, Monte Carlo methods, and agent-based modeling have become the dominant techniques in many areas of science. Extending Ourselves contains the first systematic philosophical account of these new methods, and how they require a different approach to scientific method. Paul Humphreys draws a parallel between the ways in which such computational methods have enhanced our abilities to mathematically model the world, and the more familiar ways in which scientific instruments have expanded our access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   279 citations  
  • The World as a Process: Simulations in the Natural and Social Sciences.Stephan Hartmann - 1996 - In Rainer Hegselmann et al (ed.), Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View.
    Simulation techniques, especially those implemented on a computer, are frequently employed in natural as well as in social sciences with considerable success. There is mounting evidence that the "model-building era" (J. Niehans) that dominated the theoretical activities of the sciences for a long time is about to be succeeded or at least lastingly supplemented by the "simulation era". But what exactly are models? What is a simulation and what is the difference and the relation between a model and a simulation? (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Saving the phenomena.James Bogen & James Woodward - 1988 - Philosophical Review 97 (3):303-352.
    Download  
     
    Export citation  
     
    Bookmark   385 citations  
  • Calibration.Allan Franklin - 1997 - Perspectives on Science 5 (1):31-80.
    Calibration, the use of a surrogate signal to standardize an instrument, is an important strategy for the establishment of the validity of an experimental result. In this paper, I present several examples, typical of physics experiments, that illustrate the adequacy of the surrogate. In addition, I discuss several episodes in which the question of calibration is both difficult to answer and of paramount importance. These episodes include early attempts to detect gravity waves, the question of the existence of a 17–keV (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Inventing Temperature: Measurement and Scientific Progress.Hasok Chang - 2004 - New York, US: OUP Usa.
    This book presents the concept of “complementary science” which contributes to scientific knowledge through historical and philosophical investigations. It emphasizes the fact that many simple items of knowledge that we take for granted were actually spectacular achievements obtained only after a great deal of innovative thinking, painstaking experiments, bold conjectures, and serious controversies. Each chapter in the book consists of two parts: a narrative part that states the philosophical puzzle and gives a problem-centred narrative on the historical attempts to solve (...)
    Download  
     
    Export citation  
     
    Bookmark   285 citations  
  • Evading the IRS.James Bogen & Jim Woodward - 2005 - In Martin R. Jones & Nancy Cartwright (eds.), Idealization XII: Correcting the Model. Idealization and Abstraction in the Sciences. Rodopi.
    'IRS' is our term for the logical empiricist idea that the best way to understand the epistemic bearing of observational evidence on scientific theories is to model it in terms of Inferential Relations among Sentences representing the evidence, and sentences representing hypotheses the evidence is used to evaluate. Developing ideas from our earlier work, including 'Saving the Phenomena'(Phil Review 97, 1988, p.303-52 )we argue that the bearing of observational evidence on theory depends upon causal connections and error characteristics of the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Data, phenomena, and reliability.James Woodward - 2000 - Philosophy of Science 67 (3):179.
    This paper explores how data serve as evidence for phenomena. In contrast to standard philosophical models which invite us to think of evidential relationships as logical relationships, I argue that evidential relationships in the context of data-to-phenomena reasoning are empirical relationships that depend on holding the right sort of pattern of counterfactual dependence between the data and the conclusions investigators reach on the phenomena themselves.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Image and Logic: A Material Culture of Microphysics.Peter Galison (ed.) - 1997 - University of Chicago Press: Chicago.
    Engages with the impact of modern technology on experimental physicists. This study reveals how the increasing scale and complexity of apparatus has distanced physicists from the very science which drew them into experimenting, and has fragmented microphysics into different technical traditions.
    Download  
     
    Export citation  
     
    Bookmark   324 citations  
  • Simulated experiments: Methodology for a virtual world.Winsberg Eric - 2003 - Philosophy of Science 70 (1):105-125.
    This paper examines the relationship between simulation and experiment. Many discussions of simulation, and indeed the term "numerical experiments," invoke a strong metaphor of experimentation. On the other hand, many simulations begin as attempts to apply scientific theories. This has lead many to characterize simulation as lying between theory and experiment. The aim of the paper is to try to reconcile these two points of viewto understand what methodological and epistemological features simulation has in common with experimentation, while at the (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • A tale of two methods.Eric Winsberg - 2009 - Synthese 169 (3):575 - 592.
    Simulations (both digital and analog) and experiments share many features. But what essential features distinguish them? I discuss two proposals in the literature. On one proposal, experiments investigate nature directly, while simulations merely investigate models. On another proposal, simulations differ from experiments in that simulationists manipulate objects that bear only a formal (rather than material) similarity to the targets of their investigations. Both of these proposals are rejected. I argue that simulations fundamentally differ from experiments with regard to the background (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Does matter really matter? Computer simulations, experiments, and materiality.Wendy S. Parker - 2009 - Synthese 169 (3):483-496.
    A number of recent discussions comparing computer simulation and traditional experimentation have focused on the significance of “materiality.” I challenge several claims emerging from this work and suggest that computer simulation studies are material experiments in a straightforward sense. After discussing some of the implications of this material status for the epistemology of computer simulation, I consider the extent to which materiality (in a particular sense) is important when it comes to making justified inferences about target systems on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   134 citations