Switch to: Citations

Add references

You must login to add references.
  1. Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • Internal cohen extensions.D. A. Martin & R. M. Solovay - 1970 - Annals of Mathematical Logic 2 (2):143-178.
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • [Omnibus Review].Yiannis N. Moschovakis - 1968 - Journal of Symbolic Logic 33 (3):471-472.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Borel Determinancy.Donald A. Martin - 1984 - Journal of Symbolic Logic 49 (4):1425-1425.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Superrigidity and countable Borel equivalence relations.Simon Thomas - 2003 - Annals of Pure and Applied Logic 120 (1-3):237-262.
    We formulate a Borel version of a corollary of Furman's superrigidity theorem for orbit equivalence and present a number of applications to the theory of countable Borel equivalence relations. In particular, we prove that the orbit equivalence relations arising from the natural actions of on the projective planes over the various p-adic fields are pairwise incomparable with respect to Borel reducibility.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Popa superrigidity and countable Borel equivalence relations.Simon Thomas - 2009 - Annals of Pure and Applied Logic 158 (3):175-189.
    We present some applications of Popa’s Superrigidity Theorem to the theory of countable Borel equivalence relations. In particular, we show that the universal countable Borel equivalence relation E∞ is not essentially free.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Borel equivalence relations which are highly unfree.Greg Hjorth - 2008 - Journal of Symbolic Logic 73 (4):1271-1277.
    There is an ergodic, measure preserving, countable Borel equivalence relation E on a standard Borel probability space (X, µ) such that E\c is not essentially free on any conull C ⊂ X.
    Download  
     
    Export citation  
     
    Bookmark   2 citations