Switch to: Citations

Add references

You must login to add references.
  1. Walks on ordinals and their characteristics. Progress in Mathematics, vol. 263.Stevo Todorcevic - 2011 - Bulletin of Symbolic Logic 17 (1):118-119.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Combinatorial principles in the core model for one Woodin cardinal.Ernest Schimmerling - 1995 - Annals of Pure and Applied Logic 74 (2):153-201.
    We study the fine structure of the core model for one Woodin cardinal, building of the work of Mitchell and Steel on inner models of the form . We generalize to some combinatorial principles that were shown by Jensen to hold in L. We show that satisfies the statement: “□κ holds whenever κ the least measurable cardinal λ of order λ++”. We introduce a hierarchy of combinatorial principles □κ, λ for 1 λ κ such that □κ□κ, 1 □κ, λ □κ, (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • (2 other versions)Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations