Switch to: Citations

Add references

You must login to add references.
  1. What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   591 citations  
  • Expressing ‘the structure of’ in homotopy type theory.David Corfield - 2017 - Synthese 197 (2):681-700.
    As a new foundational language for mathematics with its very different idea as to the status of logic, we should expect homotopy type theory to shed new light on some of the problems of philosophy which have been treated by logic. In this article, definite description, and in particular its employment within mathematics, is formulated within the type theory. Homotopy type theory has been proposed as an inherently structuralist foundational language for mathematics. Using the new formulation of definite descriptions, opportunities (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Homotopy theoretic models of identity types.Steve Awodey & Michael A. Warren - unknown
    Quillen [17] introduced model categories as an abstract framework for homotopy theory which would apply to a wide range of mathematical settings. By all accounts this program has been a success and—as, e.g., the work of Voevodsky on the homotopy theory of schemes [15] or the work of Joyal [11, 12] and Lurie [13] on quasicategories seem to indicate—it will likely continue to facilitate mathematical advances. In this paper we present a novel connection between model categories and mathematical logic, inspired (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Towards a Philosophy of Real Mathematics.David Corfield - 2003 - New York: Cambridge University Press.
    In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations