Switch to: References

Add citations

You must login to add citations.
  1. What is structural realism?James Ladyman - 1998 - Studies in History and Philosophy of Science Part A 29 (3):409-424.
    Download  
     
    Export citation  
     
    Bookmark   441 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Criteria of identity and the hermeneutic goal of ante rem structuralism.Scott Normand - 2018 - Synthese 195 (5):2141-2153.
    The ante rem structuralist holds that places in ante rem structures are objects with determinate identity conditions, but he cannot justify this view by providing places with criteria of identity. The latest response to this problem holds that no criteria of identity are required because mathematical practice presupposes a primitive identity relation. This paper criticizes this appeal to mathematical practice. Ante rem structuralism interprets mathematics within the theory of universals, holding that mathematical objects are places in universals. The identity problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Foundations of Mathematics in the Theory of Sets. [REVIEW]Roy T. Cook - 2003 - British Journal for the Philosophy of Science 54 (2):347-352.
    Download  
     
    Export citation  
     
    Bookmark  
  • Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Self-referential propositions.Bruno Whittle - 2017 - Synthese 194 (12):5023-5037.
    Are there ‘self-referential’ propositions? That is, propositions that say of themselves that they have a certain property, such as that of being false. There can seem reason to doubt that there are. At the same time, there are a number of reasons why it matters. For suppose that there are indeed no such propositions. One might then hope that while paradoxes such as the Liar show that many plausible principles about sentences must be given up, no such fate will befall (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry - 2017 - Foundations of Science 22 (4):763-783.
    Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Speaks’s Reduction of Propositions to Properties: A Benacerraf Problem.T. Scott Dixon & Cody Gilmore - 2016 - Thought: A Journal of Philosophy 5 (3):275-284.
    Speaks defends the view that propositions are properties: for example, the proposition that grass is green is the property being such that grass is green. We argue that there is no reason to prefer Speaks's theory to analogous but competing theories that identify propositions with, say, 2-adic relations. This style of argument has recently been deployed by many, including Moore and King, against the view that propositions are n-tuples, and by Caplan and Tillman against King's view that propositions are facts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realismo/Anti-Realismo.Eduardo Castro - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    State of the art paper on the topic realism/anti-realism. The first part of the paper elucidates the notions of existence and independence of the metaphysical characterization of the realism/anti-realism dispute. The second part of the paper presents a critical taxonomy of the most important positions and doctrines in the contemporary literature on the domains of science and mathematics: scientific realism, scientific anti-realism, constructive empiricism, structural realism, mathematical Platonism, mathematical indispensability, mathematical empiricism, intuitionism, mathematical fictionalism and second philosophy.
    Download  
     
    Export citation  
     
    Bookmark  
  • Propositions.Sean Crawford - 2006 - In Keith Brown (ed.), Encyclopaedia of Language and Linguistics, 2nd ed.
    A number of traditional roles that propositions are supposed to play are outlined. Philosophical theories of the nature of propositions are then surveyed, together with considerations for and against, with an eye on the question whether any single notion of a proposition is suited to play all or any of these roles. Approaches discussed include: (1) the structureless possible-worlds theory; (2) the structured Russellian theory; and (3) the structured Fregean theory. It is noted that it is often unclear whether these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)I—James Ladyman: On the Identity and Diversity of Objects in a Structure.James Ladyman - 2007 - Aristotelian Society Supplementary Volume 81 (1):23-43.
    The identity and diversity of individual objects may be grounded or ungrounded, and intrinsic or contextual. Intrinsic individuation can be grounded in haecceities, or absolute discernibility. Contextual individuation can be grounded in relations, but this is compatible with absolute, relative or weak discernibility. Contextual individuation is compatible with the denial of haecceitism, and this is more harmonious with science. Structuralism implies contextual individuation. In mathematics contextual individuation is in general primitive. In physics contextual individuation may be grounded in relations via (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Theories of Properties and Ontological Theory-Choice: An Essay in Metaontology.Christopher Gibilisco - 2016 - Dissertation, University of Nebraska-Lincoln
    This dissertation argues that we have no good reason to accept any one theory of properties as correct. To show this, I present three possible bases for theory-choice in the properties debate: coherence, explanatory adequacy, and explanatory value. Then I argue that none of these bases resolve the underdetermination of our choice between theories of properties. First, I argue considerations about coherence cannot resolve the underdetermination, because no traditional theory of properties is obviously incoherent. Second, I argue considerations of explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The denial of moral dilemmas as a regulative ideal.Michael Cholbi - 2016 - Canadian Journal of Philosophy 46 (2):268-289.
    The traditional debate about moral dilemmas concerns whether there are circumstances in which an agent is subject to two obligations that cannot both be fulfilled. Realists maintain there are. Irrealists deny this. Here I defend an alternative, methodologically-oriented position wherein the denial of genuine moral dilemmas functions as a regulative ideal for moral deliberation and practice. That is, moral inquiry and deliberation operate on the implicit assumption that there are no genuine moral dilemmas. This view is superior to both realism (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Confusion is Corruptive Belief in False Identity.Elmar Unnsteinsson - 2016 - Canadian Journal of Philosophy 46 (2):204-227.
    Speakers are confused about identity if they mistake one thing for two or two things for one. I present two plausible models of confusion, the Frege model and the Millikan model. I show how a prominent objection to Fregean models fails and argue that confusion consists in having false implicit beliefs involving the identity relation. Further, I argue that confused identity has characteristic corruptive effects on singular cognition and on the proper function of singular terms in linguistic communication.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The formal sciences discover the philosophers' stone.James Franklin - 1994 - Studies in History and Philosophy of Science Part A 25 (4):513-533.
    The formal sciences - mathematical as opposed to natural sciences, such as operations research, statistics, theoretical computer science, systems engineering - appear to have achieved mathematically provable knowledge directly about the real world. It is argued that this appearance is correct.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Hierarchical Propositions.Bruno Whittle - 2017 - Journal of Philosophical Logic 46 (2):215-231.
    The notion of a proposition is central to philosophy. But it is subject to paradoxes. A natural response is a hierarchical account and, ever since Russell proposed his theory of types in 1908, this has been the strategy of choice. But in this paper I raise a problem for such accounts. While this does not seem to have been recognized before, it would seem to render existing such accounts inadequate. The main purpose of the paper, however, is to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Generic Russellian Elimination of Abstract Objects.Kevin C. Klement - 2017 - Philosophia Mathematica 25 (1):91-115.
    In this paper I explore a position on which it is possible to eliminate the need for postulating abstract objects through abstraction principles by treating terms for abstracta as ‘incomplete symbols’, using Russell's no-classes theory as a template from which to generalize. I defend views of this stripe against objections, most notably Richard Heck's charge that syntactic forms of nominalism cannot correctly deal with non-first-orderizable quantifcation over apparent abstracta. I further discuss how number theory may be developed in a system (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Scientific Theories.Hans Halvorson - 2014 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. New York, NY, USA: Oxford University Press. pp. 585-608.
    Since the beginning of the 20th century, philosophers of science have asked, "what kind of thing is a scientific theory?" The logical positivists answered: a scientific theory is a mathematical theory, plus an empirical interpretation of that theory. Moreover, they assumed that a mathematical theory is specified by a set of axioms in a formal language. Later 20th century philosophers questioned this account, arguing instead that a scientific theory need not include a mathematical component; or that the mathematical component need (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Disregarding the 'Hole Argument'.Bryan W. Roberts - unknown
    Jim Weatherall has suggested that Einstein's hole argument, as presented by Earman and Norton, is based on a misleading use of mathematics. I argue on the contrary that Weatherall demands an implausible restriction on how mathematics is used. The hole argument, on the other hand, is in no new danger at all.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2016 - British Journal for the Philosophy of Science:axw012.
    I argue that the Hole Argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the Hole Argument is blocked.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Mathematics via Symmetry.Noson Yanofsky & Mark Zelcer - unknown
    We state the defining characteristic of mathematics as a type of symmetry where one can change the connotation of a mathematical statement in a certain way when the statement's truth value remains the same. This view of mathematics as satisfying such symmetry places mathematics as comparable with modern views of physics and science where, over the past century, symmetry also plays a defining role. We explore the very nature of mathematics and its relationship with natural science from this perspective. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Poderes Causales, Tropos, y Otras Criaturas Extrañas: Ensayos de Metafísica Analítica.Ezequiel Zerbudis (ed.) - 2017 - Buenos Aires: Título.
    Download  
     
    Export citation  
     
    Bookmark  
  • Objectivity in Ethics and Mathematics.Justin Clarke-Doane - 2015 - Proceedings of the Aristotelian Society: The Virtual Issue 3.
    How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Explanation and nowness: an objection to the A-Theory.Leo Carton Mollica - 2015 - Philosophical Studies 172 (9):2513-2530.
    This paper presents an argument against the A-Theory of time. Briefly, I shall contend that the A-Theorist has no explanation for why the present moment in particular has the metaphysical privilege she accords it, and that this puts the theory at a disadvantage. In what follows, I shall begin by presenting this argument. I will follow that with some potential explanations for why the present moment is privileged and reasons militating against them, in addition to some other possible objections to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Social Construction, Mathematics, and the Collective Imposition of Function onto Reality.Julian C. Cole - 2015 - Erkenntnis 80 (6):1101-1124.
    Stereotypes of social construction suggest that the existence of social constructs is accidental and that such constructs have arbitrary and subjective features. In this paper, I explore a conception of social construction according to which it consists in the collective imposition of function onto reality and show that, according to this conception, these stereotypes are incorrect. In particular, I argue that the collective imposition of function onto reality is typically non-accidental and that the products of such imposition frequently have non-arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pluralism and the absence of truth.Jeremy Wyatt - 2014 - Dissertation, University of Connecticut
    In this dissertation, I argue that we should be pluralists about truth and in turn, eliminativists about the property Truth. Traditional deflationists were right to suspect that there is no such property as Truth. Yet there is a plurality of pluralities of properties which enjoy defining features that Truth would have, were it to exist. So although, in this sense, truth is plural, Truth is non-existent. The resulting account of truth is indebted to deflationism as the provenance of the suspicion (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz, Mikhail G. Katz & Taras Kudryk - 2014 - Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Inference to the Best explanation.Peter Lipton - 2005 - In Martin Curd & Stathis Psillos (eds.), The Routledge Companion to Philosophy of Science. New York: Routledge. pp. 193.
    Science depends on judgments of the bearing of evidence on theory. Scientists must judge whether an observation or the result of an experiment supports, disconfirms, or is simply irrelevant to a given hypothesis. Similarly, scientists may judge that, given all the available evidence, a hypothesis ought to be accepted as correct or nearly so, rejected as false, or neither. Occasionally, these evidential judgments can be made on deductive grounds. If an experimental result strictly contradicts a hypothesis, then the truth of (...)
    Download  
     
    Export citation  
     
    Bookmark   306 citations  
  • Minds beyond brains and algorithms.Jan M. Zytkow - 1990 - Behavioral and Brain Sciences 13 (4):691-692.
    Download  
     
    Export citation  
     
    Bookmark  
  • Perceptive questions about computation and cognition.Jon Doyle - 1990 - Behavioral and Brain Sciences 13 (4):661-661.
    Download  
     
    Export citation  
     
    Bookmark  
  • Time-delays in conscious processes.Benjamin Libet - 1990 - Behavioral and Brain Sciences 13 (4):672-672.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Badiou's Number: A Critique of Mathematics as Ontology.Ricardo L. Nirenberg & David Nirenberg - 2011 - Critical Inquiry 37 (4):583-614.
    When an English translation of Being and Event appeared in 2005, Alain Badiou took the opportunity to reminisce about the initial French publication some twenty years before: “at that moment I was quite aware of having written a ‘great’ book of philosophy.” He located that greatness in four “affirmations” and one “radical thesis.”.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Natural Kinds as Scientific Models.Luiz Henrique Dutra - 2011 - Boston Studies in the Philosophy of Science 290:141-150.
    The concept of natural kind is center stage in the debates about scientific realism. Champions of scientific realism such as Richard Boyd hold that our most developed scientific theories allow us to “cut the world at its joints” (Boyd, 1981, 1984, 1991). In the long run we can disclose natural kinds as nature made them, though as science progresses improvements in theory allow us to revise the extension of natural kind terms.
    Download  
     
    Export citation  
     
    Bookmark  
  • Propositions, attitudinal objects, and the distinction between actions and products.Friederike Moltmann - 2013 - Canadian Journal of Philosophy, Supplementary Volume on Propositions, Edited by G. Rattan and D. Hunter 43 (5-6):679-701.
    This paper argues that attitudinal objects, entities of the sort of John's judgment, John's thought, and John's claim, should play the role of propositions, as the cognitive products of cognitive acts, not the acts themselves.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Coreference and meaning.N. Ángel Pinillos - 2011 - Philosophical Studies 154 (2):301 - 324.
    Sometimes two expressions in a discourse can be about the same thing in a way that makes that very fact evident to the participants. Consider, for example, 'he' and 'John' in 'John went to the store and he bought some milk'. Let us call this 'de jure' coreference. Other times, coreference is 'de facto' as with 'Mark Twain' and 'Samuel Clemens' in a sincere use of 'Mark Twain is not Samuel Clemens'. Here, agents can understand the speech without knowing that (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Presences of the Infinite: J.M. Coetzee and Mathematics.Peter Johnston - 2013 - Dissertation, Royal Holloway, University of London
    This thesis articulates the resonances between J. M. Coetzee's lifelong engagement with mathematics and his practice as a novelist, critic, and poet. Though the critical discourse surrounding Coetzee's literary work continues to flourish, and though the basic details of his background in mathematics are now widely acknowledged, his inheritance from that background has not yet been the subject of a comprehensive and mathematically- literate account. In providing such an account, I propose that these two strands of his intellectual trajectory not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth as Composite Correspondence.Gila Sher - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 191-210.
    The problem that motivates me arises from a constellation of factors pulling in different, sometimes opposing directions. Simplifying, they are: (1) The complexity of the world; (2) Humans’ ambitious project of theoretical knowledge of the world; (3) The severe limitations of humans’ cognitive capacities; (4) The considerable intricacy of humans’ cognitive capacities . Given these circumstances, the question arises whether a serious notion of truth is applicable to human theories of the world. In particular, I am interested in the questions: (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Propositional or Non-Propositional Attitudes?Sean Crawford - 2014 - Philosophical Studies 168 (1):179-210.
    Propositionalism is the view that intentional attitudes, such as belief, are relations to propositions. Propositionalists argue that propositionalism follows from the intuitive validity of certain kinds of inferences involving attitude reports. Jubien (2001) argues powerfully against propositions and sketches some interesting positive proposals, based on Russell’s multiple relation theory of judgment, about how to accommodate “propositional phenomena” without appeal to propositions. This paper argues that none of Jubien’s proposals succeeds in accommodating an important range of propositional phenomena, such as the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations