Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Epistemology of Wave Function Collapse in Quantum Physics.Charles Wesley Cowan & Roderich Tumulka - 2016 - British Journal for the Philosophy of Science 67 (2):405-434.
    Among several possibilities for what reality could be like in view of the empirical facts of quantum mechanics, one is provided by theories of spontaneous wave function collapse, the best known of which is the Ghirardi–Rimini–Weber theory. We show mathematically that in GRW theory there are limitations to knowledge, that is, inhabitants of a GRW universe cannot find out all the facts true of their universe. As a specific example, they cannot accurately measure the number of collapses that a given (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Limitations to Genuine Measurements in Ontological Models of Quantum Mechanics.Roderich Tumulka - 2022 - Foundations of Physics 52 (5):1-7.
    Given an ontological model of a quantum system, a “genuine measurement,” as opposed to a quantum measurement, means an experiment that determines the value of a beable, i.e., of a variable that, according to the model, has an actual value in nature before the experiment. We prove a theorem showing that in every ontological model, it is impossible to measure all beables. Put differently, there is no experiment that would reliably determine the ontic state. This result shows that the positivistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • (1 other version)Bohmian mechanics.Roderich Tumulka, Detlef Durr, Sheldon Goldstein & Nino Zanghi - 2009 - Compendium of Quantum Physics.
    Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
    Download  
     
    Export citation  
     
    Bookmark   35 citations