Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The metaphysics of laws: dispositionalism vs. primitivism.Mauro Dorato & Michael Esfeld - 2014 - In T. Bigaj & C. Wuthrich (eds.), Metaphysics and Science (tentative title). Poznan Studies.
    The paper compares dispositionalism about laws of nature with primitivism. It argues that while the distinction between these two positions can be drawn in a clear-cut manner in classical mechanics, it is less clear in quantum mechanics, due to quantum non-locality. Nonetheless, the paper points out advantages for dispositionalism in comparison to primitivism also in the area of quantum mechanics, and of contemporary physics in general.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A Proposal for a Bohmian Ontology of Quantum Gravity.Antonio Vassallo & Michael Esfeld - 2013 - Foundations of Physics (1):1-18.
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show how a non-local law in which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations.Sheldon Goldstein, Ward Struyve & Roderich Tumulka - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Underdetermination: A Realist Interpretation of Quantum Mechanics and Bohmian Mechanics.Chunling Yan - 2023 - Foundations of Science 28 (2):529-550.
    It is generally believed that two rival non-relativistic quantum theories, the realist interpretation of quantum mechanics and Bohmian mechanics, are empirically equivalent. In this paper, I use these two quantum theories to show that it is possible to offer a solution to underdetermination in some local cases, by specifying what counts as relevant empirical evidence in empirical equivalence and underdetermination. I argue for a _domain-sensitive_ approach to underdetermination. Domain sensitivity on theories’ predictions plays a role in determining whether two or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structuralist approaches to Bohmian mechanics.Lorenzo Lorenzetti - 2022 - Synthese 200 (1):1-15.
    Lam and Esfeld have argued that, within Bohmian mechanics, the wave function can be interpreted as a physical structure instantiated by the fundamental particles posited by the theory. Further, to characterize the nature of this structure, they appeal to the framework of Ontic Structural Realism, thereby proposing a structuralist interpretation of Bohmian mechanics. However, I shall point out that OSR denotes a family of distinct views, each of which maintains a different account about the relation between structures and objects, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses with first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Differentiation and Distinction: On the Problem of Individuation from Scotus to Deleuze.Gil Morejón - 2018 - Deleuze and Guatarri Studies 12 (3):353-373.
    In this paper I present an interpretation of Deleuze's concept of the virtual. I argue that this concept is best understood in relation to the problematic of individuation or differentiation, which Deleuze inherits from Duns Scotus. After analysing Scotus' critique of Aristotelian or hylomorphic approaches to the problem of individuation, I turn to Deleuze's account of differentiation and his interpretation of the calculus in chapter 4 of Difference and Repetition. The paper seeks thereby to explicate Deleuze's dialectics or theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computer Simulations, Machine Learning and the Laplacean Demon: Opacity in the Case of High Energy Physics.Florian J. Boge & Paul Grünke - forthcoming - In Andreas Kaminski, Michael Resch & Petra Gehring (eds.), The Science and Art of Simulation II.
    In this paper, we pursue three general aims: (I) We will define a notion of fundamental opacity and ask whether it can be found in High Energy Physics (HEP), given the involvement of machine learning (ML) and computer simulations (CS) therein. (II) We identify two kinds of non-fundamental, contingent opacity associated with CS and ML in HEP respectively, and ask whether, and if so how, they may be overcome. (III) We address the question of whether any kind of opacity, contingent (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How Humean is Bohumianism?Tomasz Bigaj & Antonio Vassallo - 2020 - Foundations of Physics (10):1-18.
    An important part of the influential Humean doctrine in philosophy is the supervenience principle (sometimes referred to as the principle of separability). This principle asserts that the complete state of the world supervenes on the intrinsic properties of its most fundamental components and their spatiotemporal relations (the so-called Humean mosaic). There are well-known arguments in the literature purporting to show that in quantum mechanics the Humean supervenience principle is violated, due to the existence of entangled states. Recently, however, arguments have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An argument against global no miracles arguments.Florian J. Boge - 2020 - Synthese 197 (10):4341-4363.
    Howson famously argues that the no-miracles argument, stating that the success of science indicates the approximate truth of scientific theories, is a base rate fallacy: it neglects the possibility of an overall low rate of true scientific theories. Recently a number of authors has suggested that the corresponding probabilistic reconstruction is unjust, as it concerns only the success of one isolated theory. Dawid and Hartmann, in particular, suggest to use the frequency of success in some field of research \ to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Stochasticity and Bell-type quantum field theory.Andrea Oldofredi - 2020 - Synthese 197 (2):731-750.
    This paper critically discusses an objection proposed by Nikolić against the naturalness of the stochastic dynamics implemented by the Bell-type quantum field theory, an extension of Bohmian mechanics able to describe the phenomena of particles creation and annihilation. Here I present: Nikolić’s ideas for a pilot-wave theory accounting for QFT phenomenology evaluating the robustness of his criticism, Bell’s original proposal for a Bohmian QFT with a particle ontology and the mentioned Bell-type QFT. I will argue that although Bell’s model should (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this interpretation is superior to other interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum theory, active information and the mind-matter problem.Paavo Pylkkänen - 2016 - In Pylkkänen Paavo (ed.), Contextuality from Quantum Physics to Psychology. World Scientific. pp. 325-334.
    Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This paper discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Can Bohmian Quantum Information Help us to Understand Consciousness?Paavo Pylkkänen - 2016 - In Paavo Pylkkänen (ed.), Lecture Notes in Computer Science (LNCS). Springer Publishing Company. pp. 76-87.
    The paper explores whether David Bohm’ s proposal about quantum theoretical active information, and the mind-matter scheme he developed on the basis of it, can help us to explain consciousness. Here it is important to acknowledge that other researchers in philosophy of mind and consciousness studies have also made use of the concept of information in their theories of mind and consciousness. For example, Dretske and Barwise and Seligman have explored the possibility that information in the sense of factual semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Particles, Cutoffs and Inequivalent Representations: Fraser and Wallace on Quantum Field Theory.Matthias Egg, Vincent Lam & Andrea Oldofredi - 2017 - Foundations of Physics 47 (3):453-466.
    We critically review the recent debate between Doreen Fraser and David Wallace on the interpretation of quantum field theory, with the aim of identifying where the core of the disagreement lies. We show that, despite appearances, their conflict does not concern the existence of particles or the occurrence of unitarily inequivalent representations. Instead, the dispute ultimately turns on the very definition of what a quantum field theory is. We further illustrate the fundamental differences between the two approaches by comparing them (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Relationalism about mechanics based on a minimalist ontology of matter.Antonio Vassallo, Dirk-André Deckert & Michael Esfeld - 2016 - European Journal for Philosophy of Science:1-20.
    This paper elaborates on relationalism about space and time as motivated by a minimalist ontology of the physical world: there are only matter points that are individuated by the distance relations among them, with these relations changing. We assess two strategies to combine this ontology with physics, using classical mechanics as example: the Humean strategy adopts the standard, non-relationalist physical theories as they stand and interprets their formal apparatus as the means of bookkeeping of the change of the distance relations (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • From the universe to subsystems: Why quantum mechanics appears more stochastic than classical mechanics.Andrea Oldofredi, Dustin Lazarovici, Dirk-André Deckert & Michael Esfeld - 2016 - Fluctuation and Noise Letters 15 (3).
    By means of the examples of classical and Bohmian quantum mechanics, we illustrate the well-known ideas of Boltzmann as to how one gets from laws defined for the universe as a whole to dynamical relations describing the evolution of subsystems. We explain how probabilities enter into this process, what quantum and classical probabilities have in common and where exactly their difference lies.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Humeanism, or: Physicalism without Properties.Michael Esfeld - 2014 - Philosophical Quarterly 64 (256):453-470.
    In recent literature, it has become clear that quantum physics does not refute Humeanism: Lewis’s thesis of Humean supervenience can be literally true even in the light of quantum entanglement. This point has so far been made with respect to Bohm’s quantum theory. Against this background, this paper seeks to achieve the following four results: to generalize the option of quantum Humeanism from Bohmian mechanics to primitive ontology theories in general; to show that this option applies also to classical mechanics; (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • On the Importance of Interpretation in Quantum Physics: A Reply to Elise Crull.Antonio Vassallo & Michael Esfeld - 2015 - Foundations of Physics 45 (12):1533-1536.
    Elise Crull claims that by invoking decoherence it is possible to obviate many “fine grained” issues often conflated under the common designation of measurement problem, and to make substantial progresses in the fields of quantum gravity and quantum cosmology, without any early incorporation of a particular interpretation in the quantum formalism. We point out that Crull is mistaken about decoherence and tacitly assumes some kind of interpretation of the quantum formalism.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Non-local common cause explanations for EPR.Matthias Egg & Michael Esfeld - 2014 - European Journal for Philosophy of Science 4 (2):181-196.
    The paper argues that a causal explanation of the correlated outcomes of EPR-type experiments is desirable and possible. It shows how Bohmian mechanics and the GRW mass density theory offer such an explanation in terms of a non-local common cause.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Exploring the Interplay Between Wave Function Realism and Gauge Symmetry Interpretations in Quantum Mechanics.Marco Sanchioni - 2024 - Foundations of Physics 54 (4):1-18.
    This paper examines the tension between wave function realism and interpretations of gauge symmetries within quantum mechanics. We explore how traditional views of gauge symmetries as descriptive redundancies challenge the principles of wave function realism, which regards the wave function as a real entity. By noting that, through the case study of a quantum particle in an electromagnetic field, gauge transformations impact the wave function’s phase, we present a dilemma for wave function realism. We discuss potential resolutions, including redefining ontological (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural realism and theory classification.Federico Benitez - 2023 - Theoria 89 (5):734-747.
    Ontic structural realism constitutes a promising take on scientific realism, one that avoids the well‐known issues that realist stances have with underdetermination and theory change. In its most radical versions, ontic structural realism proposes a type of eliminativism about theoretical entities, ascribing ontological commitment only to the structures, and not to the objects appearing in our theories. More moderate versions of ontic structural realism have also been proposed, allowing for ‘thin’ objects in the ontology. This work connects these takes on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Limitations to Genuine Measurements in Ontological Models of Quantum Mechanics.Roderich Tumulka - 2022 - Foundations of Physics 52 (5):1-7.
    Given an ontological model of a quantum system, a “genuine measurement,” as opposed to a quantum measurement, means an experiment that determines the value of a beable, i.e., of a variable that, according to the model, has an actual value in nature before the experiment. We prove a theorem showing that in every ontological model, it is impossible to measure all beables. Put differently, there is no experiment that would reliably determine the ontic state. This result shows that the positivistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reconciling Ontic Structural Realism and Ontological Emergence.João L. Cordovil, Gil C. Santos & John Symons - 2023 - Foundations of Science 28 (1):1-20.
    While ontic structural realism (OSR) has been a central topic in contemporary philosophy of science, the relation between OSR and the concept of emergence has received little attention. We will argue that OSR is fully compatible with emergentism. The denial of ontological emergence requires additional assumptions that, strictly speaking, go beyond OSR. We call these _physicalist closure assumptions._ We will explain these assumptions and show that they are independent of the central commitments of OSR and inconsistent with its core goals. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Worlds in a Stochastic Universe: On the Emergence of World Histories in Minimal Bohmian Mechanics.Alexander Ehmann - 2020 - Dissertation, Lingnan University
    This thesis develops a detailed account of the emergence of for all practical purposes continuous, quasi-classical world histories from the discontinuous, stochastic micro dynamics of Minimal Bohmian Mechanics (MBM). MBM is a non-relativistic quantum theory. It results from excising the guiding equation from standard Bohmian Mechanics (BM) and reinterpreting the quantum equilibrium hypothesis as a stochastic guidance law for the random actualization of configurations of Bohmian particles. On MBM, there are no continuous trajectories linking up individual configurations. Instead, individual configurations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.Andrea Oldofredi & Claudio Calosi - 2021 - Foundations of Physics 51 (4):1-21.
    According to Relational Quantum Mechanics the wave function \ is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, \ is defined as a computational device encoding observers’ information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of an underlying reality described (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Cosmic hylomorphism: A powerist ontology of quantum mechanics.William M. R. Simpson - 2021 - European Journal for Philosophy of Science 11 (1):1-25.
    The primitive ontology approach to quantum mechanics seeks to account for quantum phenomena in terms of a distribution of matter in three-dimensional space and a law of nature that describes its temporal development. This approach to explaining quantum phenomena is compatible with either a Humean or powerist account of laws. In this paper, I offer a powerist ontology in which the law is specified by Bohmian mechanics for a global configuration of particles. Unlike in other powerist ontologies, however, this law (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Classification Between $$psi$$ ψ -Ontic and $$psi$$ ψ -Epistemic Ontological Models.Andrea Oldofredi & Cristian López - 2020 - Foundations of Physics 50 (11):1315-1345.
    Harrigan and Spekkens provided a categorization of quantum ontological models classifying them as \-ontic or \-epistemic if the quantum state \ describes respectively either a physical reality or mere observers’ knowledge. Moreover, they claimed that Einstein—who was a supporter of the statistical interpretation of quantum mechanics—endorsed an epistemic view of \ In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens’ categorization implicitly assumes that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Part 2: Theoretical equivalence in physics.James Owen Weatherall - 2019 - Philosophy Compass 14 (5):e12591.
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and “interpretational” equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including (generalized) definitional (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the measurement process in Bohmian mechanics.Dustin Lazarovici - unknown
    This note clarifies several details about the description of the measurement process in Bohmian mechanics and responds to a recent preprint by Shan Gao, wrongly claiming a contradiction in the theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Particle Creation and Annihilation: Two Bohmian Approaches.Andrea Oldofredi - 2018 - Lato Sensu: Revue de la Société de Philosophie des Sciences 5 (1):77-85.
    This paper reviews and discusses two extensions of Bohmian Mechanics to the phenomena of particle creation and annihilation typically observed in Quantum Field Theory : the so-called Bell-type Quantum Field Theory and the Dirac Sea representation. These theories have a secure metaphysical basis as they postulate a particle ontology while satisfying the requirements imposed by the Primitive Ontology approach to quantum physics. Furthermore, their methodological perspective intentionally provides a set of rules to immunize physical theories to the conceptual and technical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A persistent particle ontology for QFT in terms of the Dirac sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - forthcoming - British Journal for the Philosophy of Science.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to QFT. By means of the Dirac sea model – exemplified in the electron sector of the standard model neglecting radiation – we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why determinism in physics has no implications for free will.Michael Esfeld - unknown
    This paper argues for the following three theses: There is a clear reason to prefer physical theories with deterministic dynamical equations: such theories are both maximally simple and maximally rich in information, since given an initial configuration of matter and the dynamical equations, the whole evolution of the configuration of matter is fixed. There is a clear way how to introduce probabilities in a deterministic physical theory, namely as answer to the question of what evolution of a specific system we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A proposal for a minimalist ontology.Michael Esfeld - 2017 - Synthese:1-17.
    This paper seeks to answer the following question: What is a minimal set of entities that form an ontology of the natural world, given our well-established physical theories? The proposal is that the following two axioms are sufficient to obtain such a minimalist ontology: There are distance relations that individuate simple objects, namely matter points. The matter points are permanent, with the distances between them changing. I sketch out how one can obtain our well-established physical theories on the basis of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Quantum Causal Models, Faithfulness, and Retrocausality.Peter W. Evans - 2018 - British Journal for the Philosophy of Science 69 (3):745-774.
    Wood and Spekkens argue that any causal model explaining the EPRB correlations and satisfying the no-signalling constraint must also violate the assumption that the model faithfully reproduces the statistical dependences and independences—a so-called ‘fine-tuning’ of the causal parameters. This includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of Näger, who argues that the central ideas of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Physics and Intrinsic Properties.Michael Esfeld - 2014 - In Robert M. Francescotti (ed.), Companion to Intrinsic Properties. Boston: De Gruyter. pp. 253-270.
    The paper sketches out an ontology of physics in terms of matter being primitive stuff distributed in space and all the properties physics is committed to being dispositions that fix the temporal development of the distribution of matter in space. Whereas such properties can be conceived as intrinsic properties of particles in classical mechanics, in quantum physics, there is a holistic property or structure that relates all matter and that fixes its temporal development.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Primitive ontology and quantum state in the GRW matter density theory.Matthias Egg & Michael Esfeld - 2015 - Synthese 192 (10):3229-3245.
    The paper explains in what sense the GRW matter density theory is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Point of Primitive Ontology.Paula Reichert & Dustin Lazarovici - 2022 - Foundations of Physics 52 (6):1-18.
    AbstractBohmian mechanics grounds the predictions of quantum mechanics in precise dynamical laws for a primitive ontology of point particles. In an appraisal of the de-Broglie–Bohm theory, the paper discusses the crucial epistemological and conceptual role that a primitive ontology plays within a physical theory. It argues that quantum theories without primitive ontology fail to make contact with observable reality in a clear and consistent manner. Finally, it discusses Einstein’s epistemological model and why it supports the primitive ontology approach.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Information Versus Epistemic Logic: An Analysis of the Frauchiger–Renner Theorem.Florian J. Boge - 2019 - Foundations of Physics 49 (10):1143-1165.
    A recent no-go theorem (Frauchiger and Renner in Nat Commun 9(1):3711, 2018) establishes a contradiction from a specific application of quantum theory to a multi- agent setting. The proof of this theorem relies heavily on notions such as ‘knows’ or ‘is certain that’. This has stimulated an analysis of the theorem by Nurgalieva and del Rio (in: Selinger P, Chiribella G (eds) Proceedings of the 15th international conference on quantum physics and logic (QPL 2018). EPTCS 287, Open Publishing Association, Waterloo, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bohmian Trajectories for Kerr–Newman Particles in Complex Space-Time.Mark Davidson - 2018 - Foundations of Physics 48 (11):1590-1616.
    Complexified Liénard–Wiechert potentials simplify the mathematics of Kerr–Newman particles. Here we constrain them by fiat to move along Bohmian trajectories to see if anything interesting occurs, as their equations of motion are not known. A covariant theory due to Stueckelberg is used. This paper deviates from the traditional Bohmian interpretation of quantum mechanics since the electromagnetic interactions of Kerr–Newman particles are dictated by general relativity. A Gaussian wave function is used to produce the Bohmian trajectories, which are found to be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation