Switch to: Citations

Add references

You must login to add references.
  1. Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics.Abraham A. Ungar - 1997 - Foundations of Physics 27 (6):881-951.
    Gyrogroup theory and its applications is introduced and explored, exposing the fascinating interplay between Thomas precession of special relativity theory and hyperbolic geometry. The abstract Thomas precession, called Thomas gyration, gives rise to grouplike objects called gyrogroups [A, A. Ungar, Am. J. Phys.59, 824 (1991)] the underlying axions of which are presented. The prefix gyro extensively used in terms like gyrogroups, gyroassociative and gyrocommutative laws, gyroautomorphisms, and gyrosemidirect products, stems from their underlying abstract Thomas gyration. Thomas gyration is tailor made (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)The theory of space, time and gravitation.Vladimir Aleksandrovich Fok - 1964 - New York,: Macmillan.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Tarski's system of geometry.Alfred Tarski & Steven Givant - 1999 - Bulletin of Symbolic Logic 5 (2):175-214.
    This paper is an edited form of a letter written by the two authors (in the name of Tarski) to Wolfram Schwabhäuser around 1978. It contains extended remarks about Tarski's system of foundations for Euclidean geometry, in particular its distinctive features, its historical evolution, the history of specific axioms, the questions of independence of axioms and primitive notions, and versions of the system suitable for the development of 1-dimensional geometry.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • From Pythagoras To Einstein: The Hyperbolic Pythagorean Theorem. [REVIEW]Abraham A. Ungar - 1998 - Foundations of Physics 28 (8):1283-1321.
    A new form of the Hyperbolic Pythagorean Theorem, which has a striking intuitive appeal and offers a strong contrast to its standard form, is presented. It expresses the square of the hyperbolic length of the hypotenuse of a hyperbolic right-angled triangle as the “Einstein sum” of the squares of the hyperbolic lengths of the other two sides, Fig. 1, thus completing the long path from Pythagoras to Einstein. Following the pioneering work of Varičak it is well known that relativistic velocities (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations