Switch to: Citations

Add references

You must login to add references.
  1. Free łukasiewicz and hoop residuation algebras.Joel Berman & W. J. Blok - 2004 - Studia Logica 77 (2):153 - 180.
    Hoop residuation algebras are the {, 1}-subreducts of hoops; they include Hilbert algebras and the {, 1}-reducts of MV-algebras (also known as Wajsberg algebras). The paper investigates the structure and cardinality of finitely generated free algebras in varieties of k-potent hoop residuation algebras. The assumption of k-potency guarantees local finiteness of the varieties considered. It is shown that the free algebra on n generators in any of these varieties can be represented as a union of n subalgebras, each of which (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Algebraic foundations of many-valued reasoning.Roberto Cignoli - 1999 - Boston: Kluwer Academic Publishers. Edited by Itala M. L. D'Ottaviano & Daniele Mundici.
    This unique textbook states and proves all the major theorems of many-valued propositional logic and provides the reader with the most recent developments and trends, including applications to adaptive error-correcting binary search. The book is suitable for self-study, making the basic tools of many-valued logic accessible to students and scientists with a basic mathematical knowledge who are interested in the mathematical treatment of uncertain information. Stressing the interplay between algebra and logic, the book contains material never before published, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Decomposability of free Łukasiewicz implication algebras.Jose Patricio Díaz Varela & Antoni Torrens Torrell - 2006 - Archive for Mathematical Logic 45 (8):1011-1020.
    Łukasiewicz implication algebras are {→,1}-subreducts of Wajsberg algebras (MV-algebras). They are the algebraic counterpart of Super-Łukasiewicz Implicational logics investigated in Komori, Nogoya Math J 72:127–133, 1978. The aim of this paper is to study the direct decomposability of free Łukasiewicz implication algebras. We show that freely generated algebras are directly indecomposable. We also study the direct decomposability in free algebras of all its proper subvarieties and show that infinitely freely generated algebras are indecomposable, while finitely free generated algebras can be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varieties of MV-algebras.Giovanni Panti - 1999 - Journal of Applied Non-Classical Logics 9 (1):141-157.
    ABSTRACT We characterize, for every subvariety V of the variety of all MV- algebras, the free objects in V. We use our results to compute coproducts in V and to provide simple single-axiom axiomatizations of all many-valued logics extending the Lukasiewicz one.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A geometric proof of the completeness of the łukasiewicz calculus.Giovanni Panti - 1995 - Journal of Symbolic Logic 60 (2):563-578.
    We give a self-contained geometric proof of the completeness theorem for the infinite-valued sentential calculus of Łukasiewicz.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Decomposability of free Łukasiewicz implication algebras.Jose Díaz Varela & Antoni Torrens Torrell - 2006 - Archive for Mathematical Logic 45 (8):1011-1020.
    AbstractŁukasiewicz implication algebras are {→,1}-subreducts of Wajsberg algebras (MV-algebras). They are the algebraic counterpart of Super-Łukasiewicz Implicational logics investigated in Komori, Nogoya Math J 72:127–133, 1978. The aim of this paper is to study the direct decomposability of free Łukasiewicz implication algebras. We show that freely generated algebras are directly indecomposable. We also study the direct decomposability in free algebras of all its proper subvarieties and show that infinitely freely generated algebras are indecomposable, while finitely free generated algebras can be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation