Switch to: Citations

Add references

You must login to add references.
  1. The lazy model-theoretician's guide to stability.Saharon Shelah - 1975 - Logique Et Analyse 18 (71):72.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Erratum to “Categoricity in abstract elementary classes with no maximal models” [Ann. Pure Appl. Logic 141 (2006) 108–147].Monica M. VanDieren - 2013 - Annals of Pure and Applied Logic 164 (2):131-133.
    In the paper “Categoricity in abstract elementary classes with no maximal models”, we address gaps in Saharon Shelah and Andrés Villavecesʼ proof in [4] of the uniqueness of limit models of cardinality μ in λ-categorical abstract elementary classes with no maximal models, where λ is some cardinal larger than μ. Both [4] and [5] employ set theoretic assumptions, namely GCH and Φμ+μ+).Recently, Tapani Hyttinen pointed out a problem in an early draft of [3] to Villaveces. This problem stems from the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Galois-stability for Tame abstract elementary classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Mathematical Logic 6 (01):25-48.
    We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper, we explore stability results in this new context. We assume that [Formula: see text] is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include:. Theorem 0.1. Suppose that [Formula: see text] is not only tame, but [Formula: see text]-tame. If [Formula: see text] and [Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Categoricity for abstract classes with amalgamation.Saharon Shelah - 1999 - Annals of Pure and Applied Logic 98 (1-3):261-294.
    Let be an abstract elementary class with amalgamation, and Lowenheim Skolem number LS. We prove that for a suitable Hanf number gc0 if χ0 < λ0 λ1, and is categorical inλ1+ then it is categorical in λ0.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Positive model theory and compact abstract theories.Itay Ben-Yaacov - 2003 - Journal of Mathematical Logic 3 (01):85-118.
    We develop positive model theory, which is a non first order analogue of classical model theory where compactness is kept at the expense of negation. The analogue of a first order theory in this framework is a compact abstract theory: several equivalent yet conceptually different presentations of this notion are given. We prove in particular that Banach and Hilbert spaces are compact abstract theories, and in fact very well-behaved as such.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The primal framework II: smoothness.J. T. Baldwin & S. Shelah - 1991 - Annals of Pure and Applied Logic 55 (1):1-34.
    Let be a class of models with a notion of ‘strong’ submodel and of canonically prime model over an increasing chain. We show under appropriate set-theoretic hypotheses that if K is not smooth , then K has many models in certain cardinalities. On the other hand, if K is smooth, we show that in reasonable cardinalities K has a unique homogeneous-universal model. In this situation we introduce the notion of type and prove the equivalence of saturated with homogeneous-universal.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Toward categoricity for classes with no maximal models.Saharon Shelah & Andrés Villaveces - 1999 - Annals of Pure and Applied Logic 97 (1-3):1-25.
    We provide here the first steps toward a Classification Theory ofElementary Classes with no maximal models, plus some mild set theoretical assumptions, when the class is categorical in some λ greater than its Löwenheim-Skolem number. We study the degree to which amalgamation may be recovered, the behaviour of non μ-splitting types. Most importantly, the existence of saturated models in a strong enough sense is proved, as a first step toward a complete solution to the o Conjecture for these classes. Further (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Uncountable Dense Categoricity in Cats.Itay Ben-Yaacov - 2005 - Journal of Symbolic Logic 70 (3):829 - 860.
    We prove that under reasonable assumptions, every cat (compact abstract theory) is metric, and develop some of the theory of metric cats. We generalise Morley's theorem: if a countable Hausdorff cat T has a unique complete model of density character Λ ≥ ω₁, then it has a unique complete model of density character Λ for every Λ ≥ ω₁.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Non-forking frames in abstract elementary classes.Adi Jarden & Saharon Shelah - 2013 - Annals of Pure and Applied Logic 164 (3):135-191.
    The stability theory of first order theories was initiated by Saharon Shelah in 1969. The classification of abstract elementary classes was initiated by Shelah, too. In several papers, he introduced non-forking relations. Later, Shelah [17, II] introduced the good non-forking frame, an axiomatization of the non-forking notion.We improve results of Shelah on good non-forking frames, mainly by weakening the stability hypothesis in several important theorems, replacing it by the almost λ-stability hypothesis: The number of types over a model of cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Around independence and domination in metric abstract elementary classes: assuming uniqueness of limit models.Andrés Villaveces & Pedro Zambrano - 2014 - Mathematical Logic Quarterly 60 (3):211-227.
    We study notions of independence appropriate for a stability theory of metric abstract elementary classes (for short, MAECs). We build on previous notions used in the discrete case, and adapt definitions to the metric case. In particular, we study notions that behave well under superstability‐like assumptions. Also, under uniqueness of limit models, we study domination, orthogonality and parallelism of Galois types in MAECs.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categoricity in abstract elementary classes with no maximal models.Monica VanDieren - 2006 - Annals of Pure and Applied Logic 141 (1):108-147.
    The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which the amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here we tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity under the assumption that the subclass of amalgamation bases is closed under unions of bounded, -increasing chains.
    Download  
     
    Export citation  
     
    Bookmark   33 citations