Switch to: Citations

Add references

You must login to add references.
  1. Weak axioms of determinacy and subsystems of analysis II.Kazuyuki Tanaka - 1991 - Annals of Pure and Applied Logic 52 (1-2):181-193.
    In [10], we have shown that the statement that all ∑ 1 1 partitions are Ramsey is deducible over ATR 0 from the axiom of ∑ 1 1 monotone inductive definition,but the reversal needs П 1 1 - CA 0 rather than ATR 0 . By contrast, we show in this paper that the statement that all ∑ 0 2 games are determinate is also deducible over ATR 0 from the axiom of ∑ 1 1 monotone inductive definition, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • An ordinal analysis of parameter free Π12-comprehension.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (3):263-362.
    Abstract.This paper is the second in a series of three culminating in an ordinal analysis of Π12-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with Δ12-comprehension, bar induction and Π12-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • An ordinal analysis of stability.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (1):1-62.
    Abstract.This paper is the first in a series of three which culminates in an ordinal analysis of Π12-comprehension. On the set-theoretic side Π12-comprehension corresponds to Kripke-Platek set theory, KP, plus Σ1-separation. The strength of the latter theory is encapsulated in the fact that it proves the existence of ordinals π such that, for all β>π, π is β-stable, i.e. Lπ is a Σ1-elementary substructure of Lβ. The objective of this paper is to give an ordinal analysis of a scenario of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Notes on naive semantics.Hans Herzberger - 1982 - Journal of Philosophical Logic 11 (1):61 - 102.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • A revenge-immune solution to the semantic paradoxes.Hartry Field - 2003 - Journal of Philosophical Logic 32 (2):139-177.
    The paper offers a solution to the semantic paradoxes, one in which (1) we keep the unrestricted truth schema “True(A)↔A”, and (2) the object language can include its own metalanguage. Because of the first feature, classical logic must be restricted, but full classical reasoning applies in “ordinary” contexts, including standard set theory. The more general logic that replaces classical logic includes a principle of substitutivity of equivalents, which with the truth schema leads to the general intersubstitutivity of True(A) with A (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations