Switch to: Citations

Add references

You must login to add references.
  1. Every countable model of set theory embeds into its own constructible universe.Joel David Hamkins - 2013 - Journal of Mathematical Logic 13 (2):1350006.
    The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Models with second order properties II. Trees with no undefined branches.Saharon Shelah - 1978 - Annals of Mathematical Logic 14 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Powers of regular cardinals.William B. Easton - 1970 - Annals of Mathematical Logic 1 (2):139.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Classes and truths in set theory.Kentaro Fujimoto - 2012 - Annals of Pure and Applied Logic 163 (11):1484-1523.
    This article studies three most basic systems of truth as well as their subsystems over set theory ZF possibly with AC or the axiom of global choice GC, and then correlates them with subsystems of Morse–Kelley class theory MK. The article aims at making an initial step towards the axiomatic study of truth in set theory in connection with class theory. Some new results on the side of class theory, such as conservativity, forcing and some forms of the reflection principle, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Models of set theory with definable ordinals.Ali Enayat - 2005 - Archive for Mathematical Logic 44 (3):363-385.
    A DO model (here also referred to a Paris model) is a model of set theory all of whose ordinals are first order definable in . Jeffrey Paris (1973) initiated the study of DO models and showed that (1) every consistent extension T of ZF has a DO model, and (2) for complete extensions T, T has a unique DO model up to isomorphism iff T proves V=OD. Here we provide a comprehensive treatment of Paris models. Our results include the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations