Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Ordinal arithmetic and [mathematical formula]-elementarity.Timothy J. Carlson - 1999 - Archive for Mathematical Logic 38 (7):449-460.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Proof-theoretic investigations on Kruskal's theorem.Michael Rathjen & Andreas Weiermann - 1993 - Annals of Pure and Applied Logic 60 (1):49-88.
    In this paper we calibrate the exact proof-theoretic strength of Kruskal's theorem, thereby giving, in some sense, the most elementary proof of Kruskal's theorem. Furthermore, these investigations give rise to ordinal analyses of restricted bar induction.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • How to develop Proof‐Theoretic Ordinal Functions on the basis of admissible ordinals.Michael Rathjen - 1993 - Mathematical Logic Quarterly 39 (1):47-54.
    In ordinal analysis of impredicative theories so-called collapsing functions are of central importance. Unfortunately, the definition procedure of these functions makes essential use of uncountable cardinals whereas the notation system that they call into being corresponds to a recursive ordinal. It has long been claimed that, instead, one should manage to develop such functions directly on the basis of admissible ordinals. This paper is meant to show how this can be done. Interpreting the collapsing functions as operating directly on admissible (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Nonprovability of Certain Combinatorial Properties of Finite Trees.Stephen G. Simpson - 1990 - Journal of Symbolic Logic 55 (2):868-869.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Knowledge, Machines, and the Consistency of Reinhardt's Strong Mechanistic Thesis.Timothy J. Carlson - 2000 - Annals of Pure and Applied Logic 105 (1--3):51--82.
    Reinhardt 's strong mechanistic thesis, a formalization of “I know I am a Turing machine”, is shown to be consistent with Epistemic Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Elementary patterns of resemblance.Timothy J. Carlson - 2001 - Annals of Pure and Applied Logic 108 (1-3):19-77.
    We will study patterns which occur when considering how Σ 1 -elementary substructures arise within hierarchies of structures. The order in which such patterns evolve will be seen to be independent of the hierarchy of structures provided the hierarchy satisfies some mild conditions. These patterns form the lowest level of what we call patterns of resemblance . They were originally used by the author to verify a conjecture of W. Reinhardt concerning epistemic theories 449–460; Ann. Pure Appl. Logic, to appear), (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Ordinal arithmetic and $\Sigma_{1}$ -elementarity.Timothy J. Carlson - 1999 - Archive for Mathematical Logic 38 (7):449-460.
    We will introduce a partial ordering $\preceq_1$ on the class of ordinals which will serve as a foundation for an approach to ordinal notations for formal systems of set theory and second-order arithmetic. In this paper we use $\preceq_1$ to provide a new characterization of the ubiquitous ordinal $\epsilon _{0}$.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Proof theory and ordinal analysis.W. Pohlers - 1991 - Archive for Mathematical Logic 30 (5-6):311-376.
    In the first part we show why ordinals and ordinal notations are naturally connected with proof theoretical research. We introduce the program of ordinal analysis. The second part gives examples of applications of ordinal analysis.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Elementary patterns of resemblance.Timothy Carlson - 2001 - Annals of Pure and Applied Logic 108 (1-3):19-77.
    We will study patterns which occur when considering how Σ1-elementary substructures arise within hierarchies of structures. The order in which such patterns evolve will be seen to be independent of the hierarchy of structures provided the hierarchy satisfies some mild conditions. These patterns form the lowest level of what we call patterns of resemblance. They were originally used by the author to verify a conjecture of W. Reinhardt concerning epistemic theories 449–460; Ann. Pure Appl. Logic, to appear), but their relationship (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • An ordinal analysis of parameter free Π12-comprehension.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (3):263-362.
    Abstract.This paper is the second in a series of three culminating in an ordinal analysis of Π12-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with Δ12-comprehension, bar induction and Π12-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Complexity Bounds for Some Finite Forms of Kruskal's Theorem.Andreas Weiermann - 2004 - Bulletin of Symbolic Logic 10 (4):588-590.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen.Kurt Schütte & Stephen G. Simpson - 1985 - Archive for Mathematical Logic 25 (1):75-89.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Σ 1 -elementarity and Skolem hull operators.Gunnar Wilken - 2007 - Annals of Pure and Applied Logic 145 (2):162-175.
    The exact correspondence between ordinal notations derived from Skolem hull operators, which are classical in ordinal analysis, and descriptions of ordinals in terms of Σ1-elementarity, an approach developed by T.J. Carlson, is analyzed in full detail. The ordinal arithmetical tools needed for this purpose were developed in [G. Wilken, Ordinal arithmetic based on Skolem hulling, Annals of Pure and Applied Logic 145 130–161]. We show that the least ordinal κ such that κ<1∞ 19–77] and described below) is the proof theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations