Switch to: Citations

Add references

You must login to add references.
  1. Many Concepts and Two Logics of Algorithmic Reduction.Giorgi Japaridze - 2009 - Studia Logica 91 (1):1-24.
    Within the program of finding axiomatizations for various parts of computability logic, it was proven earlier that the logic of interactive Turing reduction is exactly the implicative fragment of Heyting’s intuitionistic calculus. That sort of reduction permits unlimited reusage of the computational resource represented by the antecedent. An at least equally basic and natural sort of algorithmic reduction, however, is the one that does not allow such reusage. The present article shows that turning the logic of the first sort of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Introduction to computability logic.Giorgi Japaridze - 2003 - Annals of Pure and Applied Logic 123 (1-3):1-99.
    This work is an attempt to lay foundations for a theory of interactive computation and bring logic and theory of computing closer together. It semantically introduces a logic of computability and sets a program for studying various aspects of that logic. The intuitive notion of computational problems is formalized as a certain new, procedural-rule-free sort of games between the machine and the environment, and computability is understood as existence of an interactive Turing machine that wins the game against any possible (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Separating the basic logics of the basic recurrences.Giorgi Japaridze - 2012 - Annals of Pure and Applied Logic 163 (3):377-389.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Towards applied theories based on computability logic.Giorgi Japaridze - 2010 - Journal of Symbolic Logic 75 (2):565-601.
    Computability logic (CL) is a recently launched program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth that logic has more traditionally been. Formulas in it represent computational problems, "truth" means existence of an algorithmic solution, and proofs encode such solutions. Within the line of research devoted to finding axiomatizations for ever more expressive fragments of CL, the present paper introduces a new deductive system CL12 and proves its soundness and completeness with (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Soundness and completeness of the Cirquent calculus system CL6 for computability logic.Wenyan Xu & Sanyang Liu - 2012 - Logic Journal of the IGPL 20 (1):317-330.
    Computability logic is a formal theory of computability. The earlier article ‘Introduction to cirquent calculus and abstract resource semantics’ by Japaridze proved soundness and completeness for the basic fragment CL5 of computability logic. The present article extends that result to the more expressive cirquent calculus system CL6, which is a conservative extension of both CL5 and classical propositional logic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations