Switch to: Citations

Add references

You must login to add references.
  1. Adding a Cohen real adds an entangled linear order.Yoshifumi Yuasa - 1993 - Archive for Mathematical Logic 32 (4):299-304.
    The notion of an entangled linear order gives a useful method to construct counter examples for such problems as the productivity of chain conditions, the square bracket partition relation and the existence of a large size monotonic subfunction. In particular, if there exists and ℵ1-entangled linear order then some consequences ofMA ℵ 1 or of wOCA fail. So, in which model ofZFC does an ℵ1-entangled linear order exist? Todorcevic [6] has shown if cf2ℵ 0=ω1 then there is an ℵ1-entangled linear (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Some weak fragments of Martin’s axiom related to the rectangle refining property.Teruyuki Yorioka - 2008 - Archive for Mathematical Logic 47 (1):79-90.
    We introduce the anti-rectangle refining property for forcing notions and investigate fragments of Martin’s axiom for ℵ1 dense sets related to the anti-rectangle refining property, which is close to some fragment of Martin’s axiom for ℵ1 dense sets related to the rectangle refining property, and prove that they are really weaker fragments.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A non-implication between fragments of Martin’s Axiom related to a property which comes from Aronszajn trees.Teruyuki Yorioka - 2010 - Annals of Pure and Applied Logic 161 (4):469-487.
    We introduce a property of forcing notions, called the anti-, which comes from Aronszajn trees. This property canonically defines a new chain condition stronger than the countable chain condition, which is called the property . In this paper, we investigate the property . For example, we show that a forcing notion with the property does not add random reals. We prove that it is consistent that every forcing notion with the property has precaliber 1 and for forcing notions with the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A correction to “A non-implication between fragments of Martin’s Axiom related to a property which comes from Aronszajn trees”.Teruyuki Yorioka - 2011 - Annals of Pure and Applied Logic 162 (9):752-754.
    In the paper A non-implication between fragments of Martin’s Axiom related to a property which comes from Aronszajn trees , Proposition 2.7 is not true. To avoid this error and correct Proposition 2.7, the definition of the property is changed. In Yorioka [1], all proofs of lemmas and theorems but Lemma 6.9 are valid about this definition without changing the proofs. We give a new statement and a new proof of Lemma 6.9.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Combinatorial dichotomies in set theory.Stevo Todorcevic - 2011 - Bulletin of Symbolic Logic 17 (1):1-72.
    We give an overview of a research line concentrated on finding to which extent compactness fails at the level of first uncountable cardinal and to which extent it could be recovered on some other perhaps not so large cardinal. While this is of great interest to set theorists, one of the main motivations behind this line of research is in its applicability to other areas of mathematics. We give some details about this and we expose some possible directions for further (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Consistency of suslin's hypothesis, a nonspecial Aronszajn tree, and GCH.Chaz Schlindwein - 1994 - Journal of Symbolic Logic 59 (1):1-29.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Distinguishing types of gaps in.Teruyuki Yorioka - 2003 - Journal of Symbolic Logic 68 (4):1261-1276.
    Supplementing the well known results of Kunen we show that Martin’s Axiom is not sufficient to decide the existence of -gaps when -gaps exist, that is, it is consistent with ZFC that Martin’s Axiom holds and there are -gaps but no -gaps.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing the Mapping Reflection Principle by finite approximations.Tadatoshi Miyamoto & Teruyuki Yorioka - 2021 - Archive for Mathematical Logic 60 (6):737-748.
    Moore introduced the Mapping Reflection Principle and proved that the Bounded Proper Forcing Axiom implies that the size of the continuum is ℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _2$$\end{document}. The Mapping Reflection Principle follows from the Proper Forcing Axiom. To show this, Moore utilized forcing notions whose conditions are countable objects. Chodounský–Zapletal introduced the Y-Proper Forcing Axiom that is a weak fragments of the Proper Forcing Axiom but implies some important conclusions from the Proper Forcing Axiom, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A forcing axiom for a non-special Aronszajn tree.John Krueger - 2020 - Annals of Pure and Applied Logic 171 (8):102820.
    Suppose that T^∗ is an ω_1-Aronszajn tree with no stationary antichain. We introduce a forcing axiom PFA(T^∗) for proper forcings which preserve these properties of T^∗. We prove that PFA(T^∗) implies many of the strong consequences of PFA, such as the failure of very weak club guessing, that all of the cardinal characteristics of the continuum are greater than ω_1, and the P-ideal dichotomy. On the other hand, PFA(T^∗) implies some of the consequences of diamond principles, such as the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Y-c.c.David Chodounský & Jindřich Zapletal - 2015 - Annals of Pure and Applied Logic 166 (11):1123-1149.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   330 citations