4 found
Order:
  1. The Use of Machine Learning Methods for Image Classification in Medical Data.Destiny Agboro - forthcoming - International Journal of Ethics.
    Integrating medical imaging with computing technologies, such as Artificial Intelligence (AI) and its subsets: Machine learning (ML) and Deep Learning (DL) has advanced into an essential facet of present-day medicine, signaling a pivotal role in diagnostic decision-making and treatment plans (Huang et al., 2023). The significance of medical imaging is escalated by its sustained growth within the realm of modern healthcare (Varoquaux and Cheplygina, 2022). Nevertheless, the ever-increasing volume of medical images compared to the availability of imaging experts. Biomedical experts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Medical Image Classification with Machine Learning Classifier.Destiny Agboro - forthcoming - Journal of Computer Science.
    In contemporary healthcare, medical image categorization is essential for illness prediction, diagnosis, and therapy planning. The emergence of digital imaging technology has led to a significant increase in research into the use of machine learning (ML) techniques for the categorization of images in medical data. We provide a thorough summary of recent developments in this area in this review, using knowledge from the most recent research and cutting-edge methods.We begin by discussing the unique challenges and opportunities associated with medical image (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. English Premier League Football Predictions.Destiny Agboro - manuscript
    This research project utilized advanced computer algorithms to predict the outcomes of Premier League soccer matches. The dataset containing match data and odds from seasons was processed to handle missing information, select features and reduce complexity using Principal Component Analysis. To address imbalances, in the target variable Synthetic Minority Over sampling Technique (SMOTE) was employed. Various machine learning models such as RandomForest, DecisionTree, SVM, XGBoost and LightGBM were evaluated.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  87
    Leveraging Explainable AI and Multimodal Data for Stress Level Prediction in Mental Health Diagnostics.Destiny Agboro - 2025 - International Journal of Research and Scientific Innovation.
    The increasing prevalence of mental health issues, particularly stress, has necessitated the development of data-driven, interpretable machine learning models for early detection and intervention. This study leverages multimodal data, including activity levels, perceived stress scores (PSS), and event counts, to predict stress levels among individuals. A series of models, including Logistic Regression, Random Forest, Gradient Boosting, and Neural Networks, were evaluated for their predictive performance. Results demonstrated that ensemble models, particularly Random Forest and Gradient Boosting, performed significantly better compared to (...)
    Download  
     
    Export citation  
     
    Bookmark