Results for 'Hyperalgebras'

4 found
Order:
  1. Swap structures semantics for Ivlev-like modal logics.Marcelo E. Coniglio & Ana Claudia Golzio - 2019 - Soft Computing 23 (7):2243-2254.
    In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. SuperHyperFunction, SuperHyperStructure, Neutrosophic SuperHyperFunction and Neutrosophic SuperHyperStructure: Current understanding and future directions.Florentin Smarandache - 2023 - Neutrosophic Systems with Applications 12:68-76.
    The n-th PowerSet of a Set {or Pn(S)} better describes our real world, because a system S (which may be a company, institution, association, country, society, set of objects/plants/animals/beings, set of concepts/ideas/propositions, etc.) is formed by sub-systems, which in their turn by sub-sub-systems, and so on. We prove that the SuperHyperFunction is a generalization of classical Function, SuperFunction, and HyperFunction. And the SuperHyperAlgebra, SuperHyperGraph are part of the SuperHyperStructure. Almost all structures in our real world are Neutrosophic SuperHyperStructures since they (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  4. Weakly Free Multialgebras.Marcelo E. Coniglio & Guilherme V. Toledo - 2022 - Bulletin of the Section of Logic 51 (1):109-141.
    In abstract algebraic logic, many systems, such as those paraconsistent logics taking inspiration from da Costa's hierarchy, are not algebraizable by even the broadest standard methodologies, as that of Blok and Pigozzi. However, these logics can be semantically characterized by means of non-deterministic algebraic structures such as Nmatrices, RNmatrices and swap structures. These structures are based on multialgebras, which generalize algebras by allowing the result of an operation to assume a non-empty set of values. This leads to an interest in (...)
    Download  
     
    Export citation  
     
    Bookmark