Order:
  1. Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  2. First-order swap structures semantics for some Logics of Formal Inconsistency.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Journal of Logic and Computation 30 (6):1257-1290.
    The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (that is, logics containing contradictory but non-trivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous aproaches to quantified LFIs presented in the literature. The case of QmbC, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. G'3 as the logic of modal 3-valued Heyting algebras.Marcelo E. Coniglio, Aldo Figallo-Orellano, Alejandro Hernández-Tello & Miguel Perez-Gaspar - 2022 - IfCoLog Journal of Logics and Their Applications 9 (1):175-197.
    In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to prove that the schema ϕ ∨ (ϕ → ψ) is not a theorem of da Costa’s logic Cω. In 2006, this logic was studied (and baptized) as G'3 by Osorio et al. as a tool to define semantics of logic programming. It is known that the truth-tables of G'3 have the same expressive power than the one of Łukasiewicz 3-valued logic as well as the one of Gödel (...)
    Download  
     
    Export citation  
     
    Bookmark