In this volume, leading philosophers of psychiatry examine psychiatric classification systems, including the Diagnostic and Statistical Manual of Mental Disorders, asking whether current systems are sufficient for effective diagnosis, treatment, and research. Doing so, they take up the question of whether mental disorders are natural kinds, grounded in something in the outside world. Psychiatric categories based on natural kinds should group phenomena in such a way that they are subject to the same type of causal explanations and respond similarly to (...) the same type of causal interventions. When these categories do not evince such groupings, there is reason to revise existing classifications. The contributors all question current psychiatric classifications systems and the assumptions on which they are based. They differ, however, as to why and to what extent the categories are inadequate and how to address the problem. Topics discussed include taxometric methods for identifying natural kinds, the error and bias inherent in DSM categories, and the complexities involved in classifying such specific mental disorders as "oppositional defiance disorder" and pathological gambling. -/- Contributors George Graham, Nick Haslam, Allan Horwitz, Harold Kincaid, Dominic Murphy, Jeffrey Poland, Nancy Nyquist Potter, Don Ross, Dan Stein, Jacqueline Sullivan, Serife Tekin, Peter Zachar. (shrink)
In this chapter I investigate the kinds of changes that psychiatric kinds undergo when they become explanatory targets of areas of sciences that are not “mature” and are in the early stages of discovering mechanisms. The two areas of science that are the targets of my analysis are cognitive neuroscience and cognitive neurobiology.
This paper offers a critique of an account of explanatory integration that claims that explanations of cognitive capacities by functional analyses and mechanistic explanations can be seamlessly integrated. It is shown that achieving such explanatory integration requires that the terms designating cognitive capacities in the two forms of explanation are stable but that experimental practice in the mind-brain sciences currently is not directed at achieving such stability. A positive proposal for changing experimental practice so as to promote such stability is (...) put forward and its implications for explanatory integration are briefly considered. (shrink)
Optogenetic techniques are described as “revolutionary” for the unprecedented causal control they allow neuroscientists to exert over neural activity in awake behaving animals. In this paper, I demonstrate by means of a case study that optogenetic techniques will only illuminate causal links between the brain and behavior to the extent that their error characteristics are known and, further, that determining these error characteristics requires comparison of optogenetic techniques with techniques having well known error characteristics and consideration of the broader neural (...) and behavioral context in which the targets of optogenetic interventions are situated. (shrink)
In this chapter, I argue that scientific practice in the neurosciences of cognition is not conducive to the discovery of natural kinds of cognitive capacities. The “neurosciences of cognition” include cognitive neuroscience and cognitive neurobiology, two research areas that aim to understand how the brain gives rise to cognition and behavior. Some philosophers of neuroscience have claimed that explanatory progress in these research areas ultimately will result in the discovery of the underlying mechanisms of cognitive capacities. Once such mechanistic understanding (...) is achieved, cognitive capacities purportedly will be relegated into natural kind categories that correspond to real divisions in the causal structure of the world. I provide reasons here, however, in support of the claim that the neurosciences of cognition currently are not on a trajectory for discovering natural kinds. As I explain, this has to do with how mechanistic explanations of cognitive capacities are developed. Mechanistic explanations and the kinds they explain are abstract representational byproducts of the conceptual, experimental and integrative practices of neuroscientists. If these practices are not coordinated towards developing mechanistic explanations that mirror the causal structure of the world, then natural kinds of cognitive capacities will not be discovered. I provide reasons to think that such coordination is currently lacking in the neurosciences of cognition and indicate where changes in these practices appropriate to the natural kinds ideal would be required if achieving this ideal is indeed the goal. However, I suggest that an evaluation of current practices in these research areas is suggestive that discovering natural kinds of cognitive capacities is not the goal. (shrink)
In 2007, ten world-renowned neuroscientists proposed “A Decade of the Mind Initiative.” The contention was that, despite the successes of the Decade of the Brain, “a fundamental understanding of how the brain gives rise to the mind [was] still lacking” (2007, 1321). The primary aims of the decade of the mind were “to build on the progress of the recent Decade of the Brain (1990-99)” by focusing on “four broad but intertwined areas” of research, including: healing and protecting, understanding, enriching, (...) and modeling the mind. These four aims were to be the result of “transdisciplinary and multiagency” research spanning “across disparate fields, such as cognitive science, medicine, neuroscience, psychology, mathematics, engineering, and computer science.” The proposal for a decade of the mind prompted many questions (See Spitzer 2008). In this chapter, I address three of them: (1) How do proponents of this new decade conceive of the mind? (2) Why should a decade be devoted to understanding it? (3) What should this decade look like? (shrink)
The use of neuroscientific evidence in criminal trials has been steadily increasing. Despite progress made in recent decades in understanding the mechanisms of psychological and behavioral functioning, neuroscience is still in an early stage of development and its potential for influencing legal decision-making is highly contentious. Scholars disagree about whether or how neuroscientific evidence might impact prescriptions of criminal culpability, particularly in instances in which evidence of an accused’s history of mental illness or brain abnormality is offered to support a (...) plea of not criminally responsible. In the context of these debates, philosophers and legal scholars have identified numerous problems with admitting neuroscientific evidence in legal contexts. To date, however, less has been said about the challenges of evaluating the evidence upon which integrative mechanistic explanations that bring together evidence from different areas of neuroscience are based. As we explain, current criteria for evaluating such evidence to determine its admissibility in legal contexts are inadequate. Appealing to literature in the philosophy of scientific experimentation and theoretical work in the social, cognitive and behavioral sciences, we lay the groundwork for reforming these criteria and identify some of the implications of modifying them. (shrink)
What role does the concept of representation play in the contexts of experimentation and explanation in cognitive neurobiology? In this article, a distinction is drawn between minimal and substantive roles for representation. It is argued by appeal to a case study that representation currently plays a role in cognitive neurobiology somewhere in between minimal and substantive and that this is problematic given the ultimate explanatory goals of cognitive neurobiological research. It is suggested that what is needed is for representation to (...) instead play a more substantive role. (shrink)
Neuroscience is a laboratory-based science that spans multiple levels of analysis from molecular genetics to behavior. At every level of analysis experiments are designed in order to answer empirical questions about phenomena of interest. Understanding the nature and structure of experimentation in neuroscience is fundamental for assessing the quality of the evidence produced by such experiments and the kinds of claims that are warranted by the data. This article provides a general conceptual framework for thinking about evidence and experimentation in (...) neuroscience with a particular focus on two research areas: cognitive neuroscience and cognitive neurobiology. (shrink)
Biomedical science has been remarkably successful in explaining illness by categorizing diseases and then by identifying localizable lesions such as a virus and neoplasm in the body that cause those diseases. Not surprisingly, researchers have aspired to apply this powerful paradigm to addiction. So, for example, in a review of the neuroscience of addiction literature, Hyman and Malenka (2001, p. 695) acknowledge a general consensus among addiction researchers that “[a]ddiction can appropriately be considered as a chronic medical illness.” Like other (...) diseases, “Once addiction has taken hold, it tends to follow a chronic course.” (Koob and La Moal 2006, p. ?). Working from this perspective, much effort has gone into characterizing the symptomology of addiction and the brain changes that underlie them. Evidence for involvement of dopamine transmission changes in the ventral tegmental area (VTA) and nucleus accumbens (NAc) have received the greatest attention. Kauer and Malenka (2007, p. 844) put it well: “drugs of abuse can co-opt synaptic plasticity mechanisms in brain circuits involved in reinforcement and reward processing”. Our goal in this chapter to provide an explicit description of the assumptions of medical models, the different forms they may take, and the challenges they face in providing explanations with solid evidence of addiction. <br>. (shrink)
Scientists represent their world, grouping and organizing phenomena into classes by means of concepts. Philosophers of science have historically been interested in the nature of these concepts, the criteria that inform their application and the nature of the kinds that the concepts individuate. They also have sought to understand whether and how different systems of classification are related and more recently, how investigative practices shape conceptual development and change. Our aim in this paper is to provide a critical overview of (...) some of the key developments in this philosophical literature and identify some interesting issues it raises about the prospects of the so-called “special sciences”, including psychiatry, psychology, and the mind-brain sciences more generally, to discover natural kinds. (shrink)
Crime is a serious social problem, but its causes are not exclusively social. There is growing consensus that explaining and preventing it requires interdisciplinary research efforts. Indeed, the landscape of contemporary criminology includes a variety of theoretical models that incorporate psychological, biological and sociological factors. These multi-disciplinary approaches, however, have yet to radically advance scientific understandings of crime and shed light on how to manage it. In this paper, using conceptual tools on offer in the philosophy of science in combination (...) with theoretical work represented in this special volume of Psychology, Crime and Law, I provide some perspective on why explanatory progress in criminology has remained elusive and evaluate some positive proposals for attaining it. -/- . (shrink)
Many neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans. In this review, we describe a state-of-the-art platform poised to overcome these impediments and improve the success of translational research, the Mouse Translational Research (...) Accelerator Platform (MouseTRAP), which is centered on the touchscreen cognitive testing system for rodents. It integrates touchscreen-based tests of high-level cognitive assessment with state-of-the art neurotechnology to record and manipulate molecular and circuit level activity in vivo in animal models during human-relevant cognitive performance. The platform also is integrated with two Open Science platforms designed to facilitate knowledge and data-sharing practices within the rodent touchscreen community, touchscreencognition and mousebytes. Touchscreencognition includes the Wall, showcasing touchscreen news and publications, the Forum, for community discussion, and Training, which includes courses, videos, SOPs, and symposia. To get started, interested researchers simply create user accounts. We describe the origins of the touchscreen testing system, the novel lines of research it has facilitated, and its increasingly widespread use in translational research, which is attributable in part to knowledge-sharing efforts over the past decade. We then identify the unique features of MouseTRAP that stand to potentially revolutionize translational research, and describe new initiatives to partner with similar platforms such as McGill’s M3 platform. (shrink)
Ian Hacking instigated a revolution in 20th century philosophy of science by putting experiments (“interventions”) at the top of a philosophical agenda that historically had focused nearly exclusively on representations (“theories”). In this paper, I focus on a set of conceptual tools Hacking (1992) put forward to understand how laboratory sciences become stable and to explain what such stability meant for the prospects of unity of science and kind discovery in experimental science. I first use Hacking’s tools to understand sources (...) of instability and disunity in rodent behavioral neuroscience. I then use them to understand recent grass-roots collaborative open science initiatives aimed at establishing stability in this research area and tease out some implications for unity of science and kind creation and discovery in cognitive neuroscience. -/- . (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.