Results for 'Liana Fraenkel'

13 found
Order:
  1. What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel.Vladimir Kanovei, K. Katz, M. Katz & Thomas Mormann - 2018 - Journal of Humanistic Mathematics 8 (1):108 - 119.
    Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be successful, in terms of the feasibility of implementation of the Mean Value Theorem. We explore the evolution of the idea over the past century, and the role of Abraham Robinson's framework therein.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Philosophical Religions from Plato to Spinoza, Carlos Fraenkel, Cambridge University Press, 2012. [REVIEW]Derek Michaud - 2015 - Reviews in Religion and Theology 22 (3):233-235.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  4. (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. An Approach to QST-based Nmatrices Semantics.Juan Pablo Jorge, Federico Holik & Décio Krause - 2023 - Principia: An International Journal of Epistemology 27 (3):539-607.
    This paper introduces the theory QST of quasets as a formal basis for the Nmatrices. The main aim is to construct a system of Nmatrices by substituting standard sets by quasets. Since QST is a conservative extension of ZFA (the Zermelo-Fraenkel set theory with Atoms), it is possible to obtain generalized Nmatrices (Q-Nmatrices). Since the original formulation of QST is not completely adequate for the developments we advance here, some possible amendments to the theory are also considered. One of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s Induction-Axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  8. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. El Axioma de elección en el quehacer matemático contemporáneo.Franklin Galindo & Randy Alzate - 2022 - Aitías 2 (3):49-126.
    Para matemáticos interesados en problemas de fundamentos, lógico-matemáticos y filósofos de la matemática, el axioma de elección es centro obligado de reflexión, pues ha sido considerado esencial en el debate dentro de las posiciones consideradas clásicas en filosofía de la matemática (intuicionismo, formalismo, logicismo, platonismo), pero también ha tenido una presencia fundamental para el desarrollo de la matemática y metamatemática contemporánea. Desde una posición que privilegia el quehacer matemático, nos proponemos mostrar los aportes que ha tenido el axioma en varias (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Non-mathematical Content by Mathematical Means.Sam Adam-Day - manuscript
    In this paper, I consider the use of mathematical results in philosophical arguments arriving at conclusions with non-mathematical content, with the view that in general such usage requires additional justification. As a cautionary example, I examine Kreisel’s arguments that the Continuum Hypothesis is determined by the axioms of Zermelo-Fraenkel set theory, and interpret Weston’s 1976 reply as showing that Kreisel fails to provide sufficient justification for the use of his main technical result. If we take the perspective that mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms formulated for theories (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  13. A theory of truth for a class of mathematical languages and an application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of mathematics. MTT is (...)
    Download  
     
    Export citation  
     
    Bookmark