5 found
Order:
  1. Streamlined Book Rating Prediction with Neural Networks.Lana Aarra, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):7-13.
    Abstract: Online book review platforms generate vast user data, making accurate rating prediction crucial for personalized recommendations. This research explores neural networks as simple models for predicting book ratings without complex algorithms. Our novel approach uses neural networks to predict ratings solely from user-book interactions, eliminating manual feature engineering. The model processes data, learns patterns, and predicts ratings. We discuss data preprocessing, neural network design, and training techniques. Real-world data experiments show the model's effectiveness, surpassing traditional methods. This research can (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Predicting Audit Risk Using Neural Networks: An In-depth Analysis.Dana O. Abu-Mehsen, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):48-56.
    Abstract: This research paper presents a novel approach to predict audit risks using a neural network model. The dataset used for this study was obtained from Kaggle and comprises 774 samples with 18 features, including Sector_score, PARA_A, SCORE_A, PARA_B, SCORE_B, TOTAL, numbers, marks, Money_Value, District, Loss, Loss_SCORE, History, History_score, score, and Risk. The proposed neural network architecture consists of three layers, including one input layer, one hidden layer, and one output layer. The neural network model was trained and validated, achieving (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Prediction Heart Attack using Artificial Neural Networks (ANN).Ibrahim Younis, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):36-41.
    Abstract Heart Attack is the Cardiovascular Disease (CVD) which causes the most deaths among CVDs. We collected a dataset from Kaggle website. In this paper, we propose an ANN model for the predicting whether a patient has a heart attack or not that. The dataset set consists of 9 features with 1000 samples. We split the dataset into training, validation, and testing. After training and validating the proposed model, we tested it with testing dataset. The proposed model reached an accuracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Artificial Neural Network for Predicting COVID 19 Using JNN.Walaa Hasan, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):41-47.
    Abstract: The emergence of the novel coronavirus (COVID-19) in 2019 has presented the world with an unprecedented global health crisis. The rapid and widespread transmission of the virus has strained healthcare systems, disrupted economies, and challenged societies. In response to this monumental challenge, the intersection of technology and healthcare has become a focal point for innovation. This research endeavors to leverage the capabilities of Artificial Neural Networks (ANNs) to develop an advanced predictive model for forecasting the spread of COVID-19. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Classification of plant Species Using Neural Network.Muhammad Ashraf Al-Azbaki, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):28-35.
    Abstract: In this study, we explore the possibility of classifying the plant species. We collected the plant species from Kaggle website. This dataset encompasses 544 samples, encompassing 136 distinct plant species. Recent advancements in machine learning, particularly Artificial Neural Networks (ANNs), offer promise in enhancing plant Species classification accuracy and efficiency. This research explores plant Species classification, harnessing neural networks' power. Utilizing a rich dataset from Kaggle, containing 544 entries, we develop and evaluate a neural network model. Our neural network, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation