Results for 'Phishing'

10 found
Order:
  1.  47
    PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):471-485.
    Phishing attacks remain one of the most prevalent cybersecurity threats, affecting individuals and organizations globally. The rapid evolution of phishing techniques necessitates more sophisticated detection and classification methods. In this paper, we propose a novel approach to phishing content classification using a Genetic Ranking Optimization Algorithm (GROA), combined with dynamic weighting, to improve the accuracy and ranking of phishing versus legitimate content. Our method leverages features such as URL structure, email content analysis, and user behavior patterns (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Web page phishing detection Using Neural Network.Ahmed Salama Abu Zaiter & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):1-13.
    Web page phishing is a type of phishing attack that targets websites. In a web page phishing attack, the attacker creates a fake website that looks like a legitimate website, such as a bank or credit card company website. The attacker then sends a fraudulent message to the victim, which contains a link to the fake website. When the victim clicks on the link, they are taken to the fake website and tricked into entering their personal information.Web (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  69
    Advanced Phishing Content Identification Using Dynamic Weighting Integrated with Genetic Algorithm Optimization.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):500-520.
    The Genetic Ranking Optimization Algorithm (GROA) is used to rank phishing content based on multiple features by optimizing the ranking system through iterative selection and weighting. Dynamic weighting further enhances the process by adjusting the weights of features based on their importance in real-time. This hybrid approach enables the model to learn from the data, improving classification over time. The classification system was evaluated using benchmark phishing datasets, and the results demonstrated a significant improvement in detection accuracy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  64
    Intelligent Phishing Content Detection System Using Genetic Ranking and Dynamic Weighting Techniques.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):480-490.
    The Genetic Ranking Optimization Algorithm (GROA) is used to rank phishing content based on multiple features by optimizing the ranking system through iterative selection and weighting. Dynamic weighting further enhances the process by adjusting the weights of features based on their importance in real-time. This hybrid approach enables the model to learn from the data, improving classification over time.
    Download  
     
    Export citation  
     
    Bookmark  
  5.  60
    Automated Phishing Classification Model Utilizing Genetic Optimization and Dynamic Weighting Algorithms.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):520-530.
    The classification system was evaluated using benchmark phishing datasets, and the results demonstrated a significant improvement in detection accuracy and reduced false positives. The proposed model outperformed traditional machine learning algorithms, showing promise for real-world deployment in phishing detection systems. We conclude with suggestions for future improvements, such as incorporating more behavioral data and deploying the system in realtime monitoring applications.
    Download  
     
    Export citation  
     
    Bookmark  
  6.  52
    Real-Time Phishing Detection Using Genetic Algorithm-Based Ranking and Dynamic Weighting Optimization.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):491-500.
    The rapid evolution of phishing techniques necessitates more sophisticated detection and classification methods. In this paper, we propose a novel approach to phishing content classification using a Genetic Ranking Optimization Algorithm (GROA), combined with dynamic weighting, to improve the accuracy and ranking of phishing versus legitimate content. Our method leverages features such as URL structure, email content analysis, and user behavior patterns to enhance the detection system's decision-making process. The Genetic Ranking Optimization Algorithm (GROA) is used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Deep Learning-Based Speech and Vision Synthesis to Improve Phishing Attack Detection through a Multi-layer Adaptive Framework.Tosin ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:8.
    The ever-evolving ways attacker continues to improve their phishing techniques to bypass existing state-of-the-art phishing detection methods pose a mountain of challenges to researchers in both industry and academia research due to the inability of current approaches to detect complex phishing attack. Thus, current anti-phishing methods remain vulnerable to complex phishing because of the increasingly sophistication tactics adopted by attacker coupled with the rate at which new tactics are being developed to evade detection. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  26
    An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey. [REVIEW]Tosin Ige - manuscript
    Phishing is one of the most effective ways in which cybercriminals get sensitive details such as credentials for online banking, digital wallets, state secrets, and many more from potential victims. They do this by spamming users with malicious URLs with the sole purpose of tricking them into divulging sensitive information which is later used for various cybercrimes. In this research, we did a comprehensive review of current state-of-the-art machine learning and deep learning phishing detection techniques to expose their (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Cybercrime and Online Safety: Addressing the Challenges and Solutions Related to Cybercrime, Online Fraud, and Ensuring a Safe Digital Environment for All Users— A Case of African States (10th edition).Emmanuel N. Vitus - 2023 - Tijer- International Research Journal 10 (9):975-989.
    The internet has made the world more linked than ever before. While taking advantage of this online transition, cybercriminals target flaws in online systems, networks, and infrastructure. Businesses, government organizations, people, and communities all across the world, particularly in African countries, are all severely impacted on an economic and social level. Many African countries focused more on developing secure electricity and internet networks; yet, cybersecurity usually receives less attention than it should. One of Africa's major issues is the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey. [REVIEW]Tosin Ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:11.
    To secure computers and information systems from attackers taking advantage of vulnerabilities in the system to commit cybercrime, several methods have been proposed for real-time detection of vulnerabilities to improve security around information systems. Of all the proposed methods, machine learning had been the most effective method in securing a system with capabilities ranging from early detection of software vulnerabilities to real-time detection of ongoing compromise in a system. As there are different types of cyberattacks, each of the existing state-of-the-art (...)
    Download  
     
    Export citation  
     
    Bookmark