Order:
  1. Performance Comparison and Implementation of Bayesian Variants for Network Intrusion Detection.Tosin Ige & Christopher Kiekintveld - 2023 - Proceedings of the IEEE 1:5.
    Bayesian classifiers perform well when each of the features is completely independent of the other which is not always valid in real world applications. The aim of this study is to implement and compare the performances of each variant of the Bayesian classifier (Multinomial, Bernoulli, and Gaussian) on anomaly detection in network intrusion, and to investigate whether there is any association between each variant’s assumption and their performance. Our investigation showed that each variant of the Bayesian algorithm blindly follows its (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Data Mining in the Context of Legality, Privacy, and Ethics.Amos Okomayin, Tosin Ige & Abosede Kolade - 2023 - International Journal of Research and Innovation in Applied Science 10 (Vll):10-15.
    Data mining possess a significant threat to ethics, privacy, and legality, especially when we consider the fact that data mining makes it difficult for an individual or consumer (in the case of a company) to control accessibility and usage of his data. Individuals should be able to control how his/ her data in the data warehouse is being access and utilize while at the same time providing enabling environment which enforces legality, privacy and ethicality on data scientists, or data engineer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Encoder-Decoder Based Long Short-Term Memory (LSTM) Model for Video Captioning.Adewale Sikiru, Tosin Ige & Bolanle Matti Hafiz - forthcoming - Proceedings of the IEEE:1-6.
    This work demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Adversarial Sampling for Fairness Testing in Deep Neural Network.Tosin Ige, William Marfo, Justin Tonkinson, Sikiru Adewale & Bolanle Hafiz Matti - 2023 - International Journal of Advanced Computer Science and Applications 14 (2).
    In this research, we focus on the usage of adversarial sampling to test for the fairness in the prediction of deep neural network model across different classes of image in a given dataset. While several framework had been proposed to ensure robustness of machine learning model against adversarial attack, some of which includes adversarial training algorithm. There is still the pitfall that adversarial training algorithm tends to cause disparity in accuracy and robustness among different group. Our research is aimed at (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. Ambient Technology & Intelligence.Amos Okomayin & Tosin Ige - forthcoming - International Journal of Research and Innovation in Applied Science.
    Today, we have a mixture of young and older individuals, people with special needs, and people who can care for themselves. Over 1 billion people are estimated to be disabled; this figure corresponds to about 15% of the world's population, with 3.8% (approximately 190 million people) accounting for people aged 15 and up (Organization, 2011). The number of people with disabilities is upward due to the increase in chronic health conditions and many other things. These and other factors have made (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Implementation of Data Mining on a Secure Cloud Computing over a Web API using Supervised Machine Learning Algorithm.Tosin Ige - 2022 - International Journal of Advanced Computer Science and Applications 13 (5):1 - 4.
    Ever since the era of internet had ushered in cloud computing, there had been increase in the demand for the unlimited data available through cloud computing for data analysis, pattern recognition and technology advancement. With this also bring the problem of scalability, efficiency and security threat. This research paper focuses on how data can be dynamically mine in real time for pattern detection in a secure cloud computing environment using combination of decision tree algorithm and Random Forest over a restful (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Deep Learning-Based Speech and Vision Synthesis to Improve Phishing Attack Detection through a Multi-layer Adaptive Framework.Tosin ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:8.
    The ever-evolving ways attacker continues to improve their phishing techniques to bypass existing state-of-the-art phishing detection methods pose a mountain of challenges to researchers in both industry and academia research due to the inability of current approaches to detect complex phishing attack. Thus, current anti-phishing methods remain vulnerable to complex phishing because of the increasingly sophistication tactics adopted by attacker coupled with the rate at which new tactics are being developed to evade detection. In this research, we proposed an adaptable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  45
    Exploiting the In-Distribution Embedding Space with Deep Learning and Bayesian inference for Detection and Classification of an Out-of-Distribution Malware (Extended Abstract).Tosin ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Aaai Conferenece Proceeding.
    Current state-of-the-art out-of-distribution algorithm does not address the variation in dynamic and static behavior between malware variants from the same family as evidence in their poor performance against an out-of-distribution malware attack. We aims to address this limitation by: 1) exploitation of the in-dimensional embedding space between variants from the same malware family to account for all variations 2) exploitation of the inter-dimensional space between different malware family 3) building a deep learning-based model with a shallow neural network with maximum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  39
    Exploiting the In-Distribution Embedding Space with Deep Learning and Bayesian inference for Detection and Classification of an Out-of-Distribution Malware (Extended Abstract).Tosin Ige - forthcoming - Aaai Conference.
    Current state-of-the-art out-of-distribution algorithm does not address the variation in dynamic and static behavior between malware variants from the same family as evidence in their poor performance against an out-of-distribution malware attack. We aims to address this limitation by: 1) exploitation of the in-dimensional embedding space between variants from the same malware family to account for all variations 2) exploitation of the inter-dimensional space between different malware family 3) building a deep learning-based model with a shallow neural network with maximum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey. [REVIEW]Tosin Ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:11.
    To secure computers and information systems from attackers taking advantage of vulnerabilities in the system to commit cybercrime, several methods have been proposed for real-time detection of vulnerabilities to improve security around information systems. Of all the proposed methods, machine learning had been the most effective method in securing a system with capabilities ranging from early detection of software vulnerabilities to real-time detection of ongoing compromise in a system. As there are different types of cyberattacks, each of the existing state-of-the-art (...)
    Download  
     
    Export citation  
     
    Bookmark