Order:
  1. Human Stress Detection Based on Sleeping Habits Using Machine Learning Algorithms.S. Venkatesh - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-15.
    Stress has become a significant concern in today’s fast-paced world, affecting individuals’ physical and mental well-being. This project, titled Human Stress Detection Based on Sleeping Habits Using Machine Learning Algorithms, aims to address this issue by leveraging data-driven insights to identify stress levels. The proposed system analyzes sleeping patterns, including sleep duration, interruptions, and quality, to classify stress levels effectively. By utilizing advanced machine learning algorithms such as Decision Tree, Random Forest, Logistic Regression, and Support Vector Machine, the model processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  67
    Drug Recommendation System in Medical Emergencies using Machine Learning.S. Venkatesh - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-21.
    In critical medical emergencies, timely and accurate drug recommendation is essential for saving lives and reducing complications. This project proposes a Drug Recommendation System utilizing Machine Learning (ML) techniques to assist healthcare professionals in making quick and accurate drug selections based on patient symptoms, medical history, and emergency condition. The system integrates data from diverse medical databases, including symptoms, diseases, patient demographics, and prior medical records, to recommend the most appropriate drugs or treatments in real-time. The ML model is trained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Crime Prediction Using Machine Learning and Deep Learning.S. Venkatesh - 2024 - Journal of Science Technology and Research (JSTAR) 6 (1):1-13.
    Crime prediction has emerged as a critical application of machine learning (ML) and deep learning (DL) techniques, aimed at assisting law enforcement agencies in reducing criminal activities and improving public safety. This project focuses on developing a robust crime prediction system that leverages the power of both ML and DL algorithms to analyze historical crime data and predict potential future incidents. By integrating a combination of classification and clustering techniques, our system identifies crime-prone areas, trends, and patterns. Key parameters such (...)
    Download  
     
    Export citation  
     
    Bookmark