Switch to: References

Citations of:

The informal logic of mathematical proof

In Reuben Hersh (ed.), 18 Unconventional Essays on the Nature of Mathematics. Springer. pp. 56-70 (2006)

Add citations

You must login to add citations.
  1. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dialogue Types, Argumentation Schemes, and Mathematical Practice: Douglas Walton and Mathematics.Andrew Aberdein - 2021 - Journal of Applied Logics 8 (1):159-182.
    Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding.Sven Delarivière & Bart Van Kerkhove - 2017 - In B. Sriraman (ed.), Humanizing Mathematics and its Philosophy. Birkhäuser. pp. 173-198.
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Managing Informal Mathematical Knowledge: Techniques from Informal Logic.Andrew Aberdein - 2006 - Lecture Notes in Artificial Intelligence 4108:208--221.
    Much work in MKM depends on the application of formal logic to mathematics. However, much mathematical knowledge is informal. Luckily, formal logic only represents one tradition in logic, specifically the modeling of inference in terms of logical form. Many inferences cannot be captured in this manner. The study of such inferences is still within the domain of logic, and is sometimes called informal logic. This paper explores some of the benefits informal logic may have for the management of informal mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Towards a theory of mathematical argument.Ian J. Dove - 2009 - Foundations of Science 14 (1-2):136-152.
    In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Uses of Argument in Mathematics.Andrew Aberdein - 2005 - Argumentation 19 (3):287-301.
    Stephen Toulmin once observed that ”it has never been customary for philosophers to pay much attention to the rhetoric of mathematical debate’ [Toulmin et al., 1979, An Introduction to Reasoning, Macmillan, London, p. 89]. Might the application of Toulmin’s layout of arguments to mathematics remedy this oversight? Toulmin’s critics fault the layout as requiring so much abstraction as to permit incompatible reconstructions. Mathematical proofs may indeed be represented by fundamentally distinct layouts. However, cases of genuine conflict characteristically reflect an underlying (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation.David Hitchcock & Bart Verheij (eds.) - 2006 - Dordrecht, Netherland: Springer.
    In The Uses of Argument, Stephen Toulmin proposed a model for the layout of arguments: claim, data, warrant, qualifier, rebuttal, backing. Since then, Toulmin’s model has been appropriated, adapted and extended by researchers in speech communications, philosophy and artificial intelligence. This book assembles the best contemporary reflection in these fields, extending or challenging Toulmin’s ideas in ways that make fresh contributions to the theory of analysing and evaluating arguments.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Axioms and Postulates as Speech Acts.João Vitor Schmidt & Giorgio Venturi - 2024 - Erkenntnis 89 (8):3183-3202.
    We analyze axioms and postulates as speech acts. After a brief historical appraisal of the concept of axiom in Euclid, Frege, and Hilbert, we evaluate contemporary axiomatics from a linguistic perspective. Our reading is inspired by Hilbert and is meant to account for the assertive, directive, and declarative components of modern axiomatics. We will do this by describing the constitutive and regulative roles that axioms possess with respect to the linguistic practice of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical arguments in context.Jean Paul Van Bendegem & Bart Van Kerkhove - 2009 - Foundations of Science 14 (1-2):45-57.
    Except in very poor mathematical contexts, mathematical arguments do not stand in isolation of other mathematical arguments. Rather, they form trains of formal and informal arguments, adding up to interconnected theorems, theories and eventually entire fields. This paper critically comments on some common views on the relation between formal and informal mathematical arguments, most particularly applications of Toulmin’s argumentation model, and launches a number of alternative ideas of presentation inviting the contextualization of pieces of mathematical reasoning within encompassing bodies of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The dialectical tier of mathematical proof.Andrew Aberdein - 2011 - In Frank Zenker (ed.), Argumentation: Cognition & Community. Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), May 18--21, 2011. OSSA.
    Ralph Johnson argues that mathematical proofs lack a dialectical tier, and thereby do not qualify as arguments. This paper argues that, despite this disavowal, Johnson’s account provides a compelling model of mathematical proof. The illative core of mathematical arguments is held to strict standards of rigour. However, compliance with these standards is itself a matter of argument, and susceptible to challenge. Hence much actual mathematical practice takes place in the dialectical tier.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Towards a theory of mathematical argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 291--308.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Argumentation and learning.Baruch B. Schwarz - 2009 - In Nathalie Muller Mirza & Anne Nelly Perret-Clermont (eds.), Argumentation and education. New York: Springer. pp. 91--126.
    Download  
     
    Export citation  
     
    Bookmark   4 citations