Switch to: References

Add citations

You must login to add citations.
  1. The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical arguments in context.Jean Paul Van Bendegem & Bart Van Kerkhove - 2009 - Foundations of Science 14 (1-2):45-57.
    Except in very poor mathematical contexts, mathematical arguments do not stand in isolation of other mathematical arguments. Rather, they form trains of formal and informal arguments, adding up to interconnected theorems, theories and eventually entire fields. This paper critically comments on some common views on the relation between formal and informal mathematical arguments, most particularly applications of Toulmin’s argumentation model, and launches a number of alternative ideas of presentation inviting the contextualization of pieces of mathematical reasoning within encompassing bodies of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation.Alison Pease, John Lawrence, Katarzyna Budzynska, Joseph Corneli & Chris Reed - 2017 - Artificial Intelligence 246 (C):181-219.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Five theories of reasoning: Interconnections and applications to mathematics.Alison Pease & Andrew Aberdein - 2011 - Logic and Logical Philosophy 20 (1-2):7-57.
    The last century has seen many disciplines place a greater priority on understanding how people reason in a particular domain, and several illuminating theories of informal logic and argumentation have been developed. Perhaps owing to their diverse backgrounds, there are several connections and overlapping ideas between the theories, which appear to have been overlooked. We focus on Peirce’s development of abductive reasoning [39], Toulmin’s argumentation layout [52], Lakatos’s theory of reasoning in mathematics [23], Pollock’s notions of counterexample [44], and argumentation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bridging the gap between argumentation theory and the philosophy of mathematics.Alison Pease, Alan Smaill, Simon Colton & John Lee - 2009 - Foundations of Science 14 (1-2):111-135.
    We argue that there are mutually beneficial connections to be made between ideas in argumentation theory and the philosophy of mathematics, and that these connections can be suggested via the process of producing computational models of theories in these domains. We discuss Lakatos’s work (Proofs and Refutations, 1976) in which he championed the informal nature of mathematics, and our computational representation of his theory. In particular, we outline our representation of Cauchy’s proof of Euler’s conjecture, in which we use work (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Arguments in Context.Jean Bendegem & Bart Kerkhove - 2009 - Foundations of Science 14 (1-2):45-57.
    Except in very poor mathematical contexts, mathematical arguments do not stand in isolation of other mathematical arguments. Rather, they form trains of formal and informal arguments, adding up to interconnected theorems, theories and eventually entire fields. This paper critically comments on some common views on the relation between formal and informal mathematical arguments, most particularly applications of Toulmin’s argumentation model, and launches a number of alternative ideas of presentation inviting the contextualization of pieces of mathematical reasoning within encompassing bodies of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding.Sven Delarivière & Bart Van Kerkhove - 2017 - In B. Sriraman (ed.), Humanizing Mathematics and its Philosophy. Birkhäuser. pp. 173-198.
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Revealing Structures of Argumentations in Classroom Proving Processes.Christine Knipping & David Reid - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 119--146.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation.David Hitchcock & Bart Verheij (eds.) - 2006 - Dordrecht, Netherland: Springer.
    In The Uses of Argument, Stephen Toulmin proposed a model for the layout of arguments: claim, data, warrant, qualifier, rebuttal, backing. Since then, Toulmin’s model has been appropriated, adapted and extended by researchers in speech communications, philosophy and artificial intelligence. This book assembles the best contemporary reflection in these fields, extending or challenging Toulmin’s ideas in ways that make fresh contributions to the theory of analysing and evaluating arguments.
    Download  
     
    Export citation  
     
    Bookmark   17 citations