Switch to: References

Add citations

You must login to add citations.
  1. Strengthening Consistency Results in Modal Logic.Samuel Alexander & Arthur Paul Pedersen - 2023 - Tark.
    A fundamental question asked in modal logic is whether a given theory is consistent. But consistent with what? A typical way to address this question identifies a choice of background knowledge axioms (say, S4, D, etc.) and then shows the assumptions codified by the theory in question to be consistent with those background axioms. But determining the specific choice and division of background axioms is, at least sometimes, little more than tradition. This paper introduces generic theories for propositional modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Self-referential theories.Samuel A. Alexander - 2020 - Journal of Symbolic Logic 85 (4):1687-1716.
    We study the structure of families of theories in the language of arithmetic extended to allow these families to refer to one another and to themselves. If a theory contains schemata expressing its own truth and expressing a specific Turing index for itself, and contains some other mild axioms, then that theory is untrue. We exhibit some families of true self-referential theories that barely avoid this forbidden pattern.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fast-Collapsing Theories.Samuel A. Alexander - 2013 - Studia Logica (1):1-21.
    Reinhardt’s conjecture, a formalization of the statement that a truthful knowing machine can know its own truthfulness and mechanicalness, was proved by Carlson using sophisticated structural results about the ordinals and transfinite induction just beyond the first epsilon number. We prove a weaker version of the conjecture, by elementary methods and transfinite induction up to a smaller ordinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability.Pawel Pawlowski & Rafal Urbaniak - forthcoming - Logic and Logical Philosophy:1-27.
    BAT is a logic built to capture the inferential behavior of informal provability. Ultimately, the logic is meant to be used in an arithmetical setting. To reach this stage it has to be extended to a first-order version. In this paper we provide such an extension. We do so by constructing non-deterministic three-valued models that interpret quantifiers as some sorts of infinite disjunctions and conjunctions. We also elaborate on the semantical properties of the first-order system and consider a couple of (...)
    Download  
     
    Export citation  
     
    Bookmark