Switch to: References

Add citations

You must login to add citations.
  1. “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Download  
     
    Export citation  
     
    Bookmark  
  • Putnam's indeterminacy argument: The skolemization of absolutely everything.Carsten Hansen - 1987 - Philosophical Studies 51 (1):77--99.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Mathematics of Skolem's Paradox.Timothy Bays - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 615--648.
    Over the years, Skolem’s Paradox has generated a fairly steady stream of philosophical discussion; nonetheless, the overwhelming consensus among philosophers and logicians is that the paradox doesn’t constitute a mathematical problem (i.e., it doesn’t constitute a real contradiction). Further, there’s general agreement as to why the paradox doesn’t constitute a mathematical problem. By looking at the way firstorder structures interpret quantifiers—and, in particular, by looking at how this interpretation changes as we move from structure to structure—we can give a technically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • تحلیل منطقی فلسفی پارادوکس اسکولم. Mansooreh - 2015 - Dissertation,
    ریاضیدانان هرروز با مجموعههای ناشمارا، مجموعهی توانی، خوشترتیبی، تناهی و ... سروکار دارند و با این تصور که این مفاهیم همان چیزهایی هستند که در ذهن دارند، کتابها و اثباتهای ریاضی را میخوانند و میفهمند و درمورد آنها صحبت میکنند. اما آیا این مفاهیم همان چیزهایی هستند که ریاضیدانان تصور میکنند؟ اولینبار اسکولم با بیان یک پارادوکس شک خود را به این موضوع ابراز کرد. بنابر قضیهی لوونهایم اسکولم رو به پایین، نظریه مجموعهها مدلی شمارا دارد. این مدل قضیهی کانتور (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Skolem, the Skolem 'Paradox' and Informal Mathematics.Luca Bellotti - 2006 - Theoria 72 (3):177-212.
    I discuss Skolem's own ideas on his ‘paradox’, some classical disputes between Skolemites and Antiskolemites, and the underlying notion of ‘informal mathematics’, from a point of view which I hope to be rather unusual. I argue that the Skolemite cannot maintain that from an absolute point of view everything is in fact denumerable; on the other hand, the Antiskolemite is left with the onus of explaining the notion of informal mathematical knowledge of the intended model of set theory. 1 conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Talking About Models: The Inherent Constraints of Mathematics.Stathis Livadas - 2020 - Axiomathes 30 (1):13-36.
    In this article my primary intention is to engage in a discussion on the inherent constraints of models, taken as models of theories, that reaches beyond the epistemological level. Naturally the paper takes into account the ongoing debate between proponents of the syntactic and the semantic view of theories and that between proponents of the various versions of scientific realism, reaching down to the most fundamental, subjective level of discourse. In this approach, while allowing for a limited discussion of physical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations