Switch to: References

Add citations

You must login to add citations.
  1. Lattice embeddings and array noncomputable degrees.Stephen M. Walk - 2004 - Mathematical Logic Quarterly 50 (3):219.
    We focus on a particular class of computably enumerable degrees, the array noncomputable degrees defined by Downey, Jockusch, and Stob, to answer questions related to lattice embeddings and definability in the partial ordering of c. e. degrees under Turing reducibility. We demonstrate that the latticeM5 cannot be embedded into the c. e. degrees below every array noncomputable degree, or even below every nonlow array noncomputable degree. As Downey and Shore have proved that M5 can be embedded below every nonlow2 degree, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Totally ω-computably enumerable degrees and bounding critical triples.Rod Downey, Noam Greenberg & Rebecca Weber - 2007 - Journal of Mathematical Logic 7 (2):145-171.
    We characterize the class of c.e. degrees that bound a critical triple as those degrees that compute a function that has no ω-c.e. approximation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Maximal contiguous degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.
    A computably enumerable (c.e.) degree is a maximal contiguous degree if it is contiguous and no c.e. degree strictly above it is contiguous. We show that there are infinitely many maximal contiguous degrees. Since the contiguous degrees are definable, the class of maximal contiguous degrees provides the first example of a definable infinite anti-chain in the c.e. degrees. In addition, we show that the class of maximal contiguous degrees forms an automorphism base for the c.e. degrees and therefore for the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations