Switch to: References

Add citations

You must login to add citations.
  1. Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
    Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
    Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Weak Indestructibility and Reflection.James Holland - 2024 - Journal of Symbolic Logic 89 (3):980-1006.
    We establish an equiconsistency between (1) weak indestructibility for all $\kappa +2$ -degrees of strength for cardinals $\kappa $ in the presence of a proper class of strong cardinals, and (2) a proper class of cardinals that are strong reflecting strongs. We in fact get weak indestructibility for degrees of strength far beyond $\kappa +2$, well beyond the next inaccessible limit of measurables (of the ground model). One direction is proven using forcing and the other using core model techniques from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The large cardinals between supercompact and almost-huge.Norman Lewis Perlmutter - 2015 - Archive for Mathematical Logic 54 (3-4):257-289.
    I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j:V→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j: V \to M}$$\end{document} such that M is closed under sequences of length sup{j|f:κ→κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sup\{{j\,|\,f: \kappa \to \kappa}\}}$$\end{document}. Some of the other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations