Switch to: References

Add citations

You must login to add citations.
  1. Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Strongly compact cardinals and the continuum function.Arthur W. Apter, Stamatis Dimopoulos & Toshimichi Usuba - 2021 - Annals of Pure and Applied Logic 172 (9):103013.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Tallness and level by level equivalence and inequivalence.Arthur W. Apter - 2010 - Mathematical Logic Quarterly 56 (1):4-12.
    We construct two models containing exactly one supercompact cardinal in which all non-supercompact measurable cardinals are strictly taller than they are either strongly compact or supercompact. In the first of these models, level by level equivalence between strong compactness and supercompactness holds. In the other, level by level inequivalence between strong compactness and supercompactness holds. Each universe has only one strongly compact cardinal and contains relatively few large cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Indestructibility and stationary reflection.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):228-236.
    If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ -strategically closed forcing and λ is weakly compact, then we show thatA = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets}must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The least strongly compact can be the least strong and indestructible.Arthur W. Apter - 2006 - Annals of Pure and Applied Logic 144 (1-3):33-42.
    We construct two models in which the least strongly compact cardinal κ is also the least strong cardinal. In each of these models, κ satisfies indestructibility properties for both its strong compactness and strongness.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diamond, square, and level by level equivalence.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (3):387-395.
    We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with certain additional combinatorial properties. In particular, in this model, ♦ δ holds for every regular uncountable cardinal δ, and below the least supercompact cardinal κ, □ δ holds on a stationary subset of κ. There are no restrictions in our model on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.
    We force and obtain three models in which level by level equivalence between strong compactness and supercompactness holds and in which, below the least supercompact cardinal, GCH fails unboundedly often. In two of these models, GCH fails on a set having measure 1 with respect to certain canonical measures. There are no restrictions in all of our models on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the indestructibility aspects of identity crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.
    We investigate the indestructibility properties of strongly compact cardinals in universes where strong compactness suffers from identity crisis. We construct an iterative poset that can be used to establish Kimchi–Magidor theorem from (in The independence between the concepts of compactness and supercompactness, circulated manuscript), i.e., that the first n strongly compact cardinals can be the first n measurable cardinals. As an application, we show that the first n strongly compact cardinals can be the first n measurable cardinals while the strong (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructible strong compactness but not supercompactness.Arthur W. Apter, Moti Gitik & Grigor Sargsyan - 2012 - Annals of Pure and Applied Logic 163 (9):1237-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Characterizing strong compactness via strongness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (4):375.
    We construct a model in which the strongly compact cardinals can be non-trivially characterized via the statement “κ is strongly compact iff κ is a measurable limit of strong cardinals”. If our ground model contains large enough cardinals, there will be supercompact cardinals in the universe containing this characterization of the strongly compact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Woodin for strong compactness cardinals.Stamatis Dimopoulos - 2019 - Journal of Symbolic Logic 84 (1):301-319.
    Download  
     
    Export citation  
     
    Bookmark  
  • A note on tall cardinals and level by level equivalence.Arthur W. Apter - 2016 - Mathematical Logic Quarterly 62 (1-2):128-132.
    Starting from a model “κ is supercompact” + “No cardinal is supercompact up to a measurable cardinal”, we force and construct a model such that “κ is supercompact” + “No cardinal is supercompact up to a measurable cardinal” + “δ is measurable iff δ is tall” in which level by level equivalence between strong compactness and supercompactness holds. This extends and generalizes both [, Theorem 1] and the results of.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indestructibility under adding Cohen subsets and level by level equivalence.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):271-279.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which the least supercompact cardinal κ has its strong compactness indestructible under adding arbitrarily many Cohen subsets. There are no restrictions on the large cardinal structure of our model.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Level by level equivalence and strong compactness.Arthur W. Apter - 2004 - Mathematical Logic Quarterly 50 (1):51.
    We force and construct models in which there are non-supercompact strongly compact cardinals which aren't measurable limits of strongly compact cardinals and in which level by level equivalence between strong compactness and supercompactness holds non-trivially except at strongly compact cardinals. In these models, every measurable cardinal κ which isn't either strongly compact or a witness to a certain phenomenon first discovered by Menas is such that for every regular cardinal λ > κ, κ is λ strongly compact iff κ is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Precisely controlling level by level behavior.Arthur W. Apter - 2017 - Mathematical Logic Quarterly 63 (1-2):77-84.
    We construct four models containing one supercompact cardinal in which level by level equivalence between strong compactness and supercompactness and level by level inequivalence between strong compactness and supercompactness are precisely controlled at each non‐supercompact measurable cardinal. In these models, no cardinal κ is ‐supercompact, where is the least inaccessible cardinal greater than κ.
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity crises and strong compactness III: Woodin cardinals. [REVIEW]Arthur W. Apter & Grigor Sargsyan - 2006 - Archive for Mathematical Logic 45 (3):307-322.
    We show that it is consistent, relative to n ∈ ω supercompact cardinals, for the strongly compact and measurable Woodin cardinals to coincide precisely. In particular, it is consistent for the first n strongly compact cardinals to be the first n measurable Woodin cardinals, with no cardinal above the n th strongly compact cardinal being measurable. In addition, we show that it is consistent, relative to a proper class of supercompact cardinals, for the strongly compact cardinals and the cardinals which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations