Switch to: References

Add citations

You must login to add citations.
  1. The Epsilon Calculus.Jeremy Avigad & Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    The epsilon calculus is a logical formalism developed by David Hilbert in the service of his program in the foundations of mathematics. The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. Specifically, in the calculus, a term εx A denotes some x satisfying A(x), if there is one. In Hilbert's Program, the epsilon terms play the role of ideal elements; the aim of Hilbert's finitistic consistency proofs is to give a procedure which removes such terms (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • 2005 annual meeting of the association for symbolic logic.Ilijas Farah, Deirdre Haskell, Andrey Morozov, Vladimir Pestov & Jindrich Zapletal - 2006 - Bulletin of Symbolic Logic 12 (1):143.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ideas in the epsilon substitution method for -FIX.Toshiyasu Arai - 2005 - Annals of Pure and Applied Logic 136 (1-2):3-21.
    Hilbert proposed the epsilon substitution method as a basis for consistency proofs. Hilbert’s Ansatz for finding a solving substitution for any given finite set of transfinite axioms is, starting with the null substitution S0, to correct false values step by step and thereby generate the process S0,S1,…. The problem is to show that the approximating process terminates. After Gentzen’s innovation, Ackermann [W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 162–194] succeeded in proving the termination of the process for the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • 2006 Summer Meeting of the Association for Symbolic Logic Logic Colloquium '06: Nijmegen, The Netherlands July 27-August 2, 2006. [REVIEW]Helmut Schwichtenberg - 2007 - Bulletin of Symbolic Logic 13 (2):251-298.
    Download  
     
    Export citation  
     
    Bookmark  
  • (4 other versions)Epsilon Substitution Method for [image] -FIX.Toshiyasu Arai - 2006 - Journal of Symbolic Logic 71 (4):1155 - 1188.
    In this paper we formulate epsilon substitution method for a theory $\Pi _{2}^{0}$-FIX for non-monotonic $\Pi _{2}^{0}$ inductive definitions. Then we give a termination proof of the H-processes based on Ackermann [1].
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Epsilon substitution for first- and second-order predicate logic.Grigori Mints - 2013 - Annals of Pure and Applied Logic 164 (6):733-739.
    The epsilon substitution method was proposed by D. Hilbert as a tool for consistency proofs. A version for first order predicate logic had been described and proved to terminate in the monograph “Grundlagen der Mathematik”. As far as the author knows, there have been no attempts to extend this approach to the second order case. We discuss possible directions for and obstacles to such extensions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cut elimination for a simple formulation of epsilon calculus.Grigori Mints - 2008 - Annals of Pure and Applied Logic 152 (1):148-160.
    A simple cut elimination proof for arithmetic with the epsilon symbol is used to establish the termination of a modified epsilon substitution process. This opens a possibility of extension to much stronger systems.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Epsilon substitution for $$\textit{ID}_1$$ ID 1 via cut-elimination.Henry Towsner - 2018 - Archive for Mathematical Logic 57 (5-6):497-531.
    The \-substitution method is a technique for giving consistency proofs for theories of arithmetic. We use this technique to give a proof of the consistency of the impredicative theory \ using a variant of the cut-elimination formalism introduced by Mints.
    Download  
     
    Export citation  
     
    Bookmark  
  • (4 other versions)Epsilon substitution method for [Π0 1, Π0 1]-FIX.T. Arai - 2005 - Archive for Mathematical Logic 44 (8):1009-1043.
    We formulate epsilon substitution method for a theory [Π0 1, Π0 1]-FIX for two steps non-monotonic Π0 1 inductive definitions. Then we give a termination proof of the H-processes based on Ackermann [1].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ackermann’s substitution method.Georg Moser - 2006 - Annals of Pure and Applied Logic 142 (1):1-18.
    We aim at a conceptually clear and technically smooth investigation of Ackermann’s substitution method [W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 162–194]. Our analysis provides a direct classification of the provably recursive functions of , i.e. Peano Arithmetic framed in the ε-calculus.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Epsilon substitution for transfinite induction.Henry Towsner - 2005 - Archive for Mathematical Logic 44 (4):397-412.
    We apply Mints’ technique for proving the termination of the epsilon substitution method via cut-elimination to the system of Peano Arithmetic with Transfinite Induction given by Arai.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Exact bounds on epsilon processes.Toshiyasu Arai - 2011 - Archive for Mathematical Logic 50 (3-4):445-458.
    In this paper we show that the lengths of the approximating processes in epsilon substitution method are calculable by ordinal recursions in an optimal way.
    Download  
     
    Export citation  
     
    Bookmark   1 citation