Switch to: References

Add citations

You must login to add citations.
  1. New sequent calculi for Visser's Formal Propositional Logic.Katsumasa Ishii - 2003 - Mathematical Logic Quarterly 49 (5):525.
    Two cut-free sequent calculi which are conservative extensions of Visser's Formal Propositional Logic are introduced. These satisfy a kind of subformula property and by this property the interpolation theorem for FPL are proved. These are analogies to Aghaei-Ardeshir's calculi for Visser's Basic Propositional Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpolation Property on Visser's Formal Propositional Logic.Majid Alizadeh & Masoud Memarzadeh - 2022 - Bulletin of the Section of Logic 51 (3):297-316.
    In this paper by using a model-theoretic approach, we prove Craig interpolation property for Formal Propositional Logic, FPL, Basic propositional logic, BPL and the uniform left-interpolation property for FPL. We also show that there are countably infinite extensions of FPL with the uniform interpolation property.
    Download  
     
    Export citation  
     
    Bookmark  
  • Basic propositional logic and the weak excluded middle.Majid Alizadeh & Mohammad Ardeshir - 2019 - Logic Journal of the IGPL 27 (3):371-383.
    Download  
     
    Export citation  
     
    Bookmark  
  • Sequent Calculi for Visser's Propositional Logics.Kentaro Kikuchi & Ryo Kashima - 2001 - Notre Dame Journal of Formal Logic 42 (1):1-22.
    This paper introduces sequent systems for Visser's two propositional logics: Basic Propositional Logic (BPL) and Formal Propositional Logic (FPL). It is shown through semantical completeness that the cut rule is admissible in each system. The relationships with Hilbert-style axiomatizations and with other sequent formulations are discussed. The cut-elimination theorems are also demonstrated by syntactical methods.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Basic Predicate Calculus.Wim Ruitenburg - 1998 - Notre Dame Journal of Formal Logic 39 (1):18-46.
    We establish a completeness theorem for first-order basic predicate logic BQC, a proper subsystem of intuitionistic predicate logic IQC, using Kripke models with transitive underlying frames. We develop the notion of functional well-formed theory as the right notion of theory over BQC for which strong completeness theorems are possible. We also derive the undecidability of basic arithmetic, the basic logic equivalent of intuitionistic Heyting Arithmetic and classical Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Open Filters and Congruence Relations on Self-Distributive Weak Heyting Algebras.Shokoofeh Ghorbani, Mohsen Nourany & Arsham Borumand Saeid - forthcoming - Bulletin of the Section of Logic:23 pp..
    In this paper, we study (open) filters and deductive systems of self-distributive weak Heyting algebras (SDWH-algebras) and obtain some results which determine the relationship between them. We show that the variety of SDWH-algebras is not weakly regular and every open filter is the kernel of at least one congruence relation. Then it presents necessary and sufficient conditions for the existence of a one to one correspondence between open filters and congruence relations.
    Download  
     
    Export citation  
     
    Bookmark  
  • Valuations: Bi, Tri, and Tetra.Rohan French & David Ripley - 2019 - Studia Logica 107 (6):1313-1346.
    This paper considers some issues to do with valuational presentations of consequence relations, and the Galois connections between spaces of valuations and spaces of consequence relations. Some of what we present is known, and some even well-known; but much is new. The aim is a systematic overview of a range of results applicable to nonreflexive and nontransitive logics, as well as more familiar logics. We conclude by considering some connectives suggested by this approach.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The de Jongh property for Basic Arithmetic.Mohammad Ardeshir & S. Mojtaba Mojtahedi - 2014 - Archive for Mathematical Logic 53 (7):881-895.
    We prove that Basic Arithmetic, BA, has the de Jongh property, i.e., for any propositional formula A(p 1,..., p n ) built up of atoms p 1,..., p n, BPC $${\vdash}$$ A(p 1,..., p n ) if and only if for all arithmetical sentences B 1,..., B n, BA $${\vdash}$$ A(B 1,..., B n ). The technique used in our proof can easily be applied to some known extensions of BA.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Order algebraizable logics.James G. Raftery - 2013 - Annals of Pure and Applied Logic 164 (3):251-283.
    This paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Weak Lewis Distributive Lattices.Ismael Calomino, Sergio A. Celani & Hernán J. San Martín - forthcoming - Studia Logica:1-41.
    In this paper we study the variety \(\textsf{WL}\) of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the \(\{\vee,\wedge,\Rightarrow,\bot,\top \}\) -fragment of the arithmetical base preservativity logic \(\mathsf {iP^{-}}\). The variety \(\textsf{WL}\) properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Binary modal logic and unary modal logic.Dick de Jongh & Fatemeh Shirmohammadzadeh Maleki - forthcoming - Logic Journal of the IGPL.
    Standard unary modal logic and binary modal logic, i.e. modal logic with one binary operator, are shown to be definitional extensions of one another when an additional axiom |$U$| is added to the basic axiomatization of the binary side. This is a strengthening of our previous results. It follows that all unary modal logics extending Classical Modal Logic, in other words all unary modal logics with a neighborhood semantics, can equivalently be seen as binary modal logics. This in particular applies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Closer Look at Some Subintuitionistic Logics.Ramon Jansana & Sergio Celani - 2001 - Notre Dame Journal of Formal Logic 42 (4):225-255.
    In the present paper we study systematically several consequence relations on the usual language of propositional intuitionistic logic that can be defined semantically by using Kripke frames and the same defining truth conditions for the connectives as in intuitionistic logic but without imposing some of the conditions on the Kripke frames that are required in the intuitionistic case. The logics so obtained are called subintuitionistic logics in the literature. We depart from the perspective of considering a logic just as a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Gentzen-style axiomatizations for some conservative extensions of basic propositional logic.Mojtaba Aghaei & Mohammad Ardeshir - 2001 - Studia Logica 68 (2):263-285.
    We introduce two Gentzen-style sequent calculus axiomatizations for conservative extensions of basic propositional logic. Our first axiomatization is an ipmrovement of, in the sense that it has a kind of the subformula property and is a slight modification of. In this system the cut rule is eliminated. The second axiomatization is a classical conservative extension of basic propositional logic. Using these axiomatizations, we prove interpolation theorems for basic propositional logic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the linear Lindenbaum algebra of Basic Propositional Logic.Majid Alizadeh & Mohammad Ardeshir - 2004 - Mathematical Logic Quarterly 50 (1):65.
    We study the linear Lindenbaum algebra of Basic Propositional Calculus, called linear basic algebra.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Bounded distributive lattices with strict implication and weak difference.Sergio Celani, Agustín Nagy & William Zuluaga Botero - forthcoming - Archive for Mathematical Logic:1-36.
    In this paper we introduce the class of weak Heyting–Brouwer algebras (WHB-algebras, for short). We extend the well known duality between distributive lattices and Priestley spaces, in order to exhibit a relational Priestley-like duality for WHB-algebras. Finally, as an application of the duality, we build the tense extension of a WHB-algebra and we employ it as a tool for proving structural properties of the variety such as the finite model property, the amalgamation property, the congruence extension property and the Maehara (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Latarres, Lattices with an Arrow.Mohammad Ardeshir & Wim Ruitenburg - 2018 - Studia Logica 106 (4):757-788.
    A latarre is a lattice with an arrow. Its axiomatization looks natural. Latarres have a nontrivial theory which permits many constructions of latarres. Latarres appear as an end result of a series of generalizations of better known structures. These include Boolean algebras and Heyting algebras. Latarres need not have a distributive lattice.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • n‐linear weakly Heyting algebras.Sergio A. Celani - 2006 - Mathematical Logic Quarterly 52 (4):404-416.
    The present paper introduces and studies the variety [MATHEMATICAL SCRIPT CAPITAL W]ℋn of n-linear weakly Heyting algebras. It corresponds to the algebraic semantic of the strict implication fragment of the normal modal logic K with a generalization of the axiom that defines the linear intuitionistic logic or Dummett logic. Special attention is given to the variety [MATHEMATICAL SCRIPT CAPITAL W]ℋ2 that generalizes the linear Heyting algebras studied in [10] and [12], and the linear Basic algebras introduced in [2].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provably total functions of Basic Arithemtic.Saeed Salehi - 2003 - Mathematical Logic Quarterly 49 (3):316.
    It is shown that all the provably total functions of Basic Arithmetic BA, a theory introduced by Ruitenburg based on Predicate Basic Calculus, are primitive recursive. Along the proof a new kind of primitive recursive realizability to which BA is sound, is introduced. This realizability is similar to Kleene's recursive realizability, except that recursive functions are restricted to primitive recursives.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On self‐distributive weak Heyting algebras.Mohsen Nourany, Shokoofeh Ghorbani & Arsham Borumand Saeid - 2023 - Mathematical Logic Quarterly 69 (2):192-206.
    We use the left self‐distributive axiom to introduce and study a special class of weak Heyting algebras, called self‐distributive weak Heyting algebras (SDWH‐algebras). We present some useful properties of SDWH‐algebras and obtain some equivalent conditions of them. A characteristic of SDWH‐algebras of orders 3 and 4 is given. Finally, we study the relation between the variety of SDWH‐algebras and some of the known subvarieties of weak Heyting algebras such as the variety of Heyting algebras, the variety of basic algebras, the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Boolean Algebras in Visser Algebras.Majid Alizadeh, Mohammad Ardeshir & Wim Ruitenburg - 2016 - Notre Dame Journal of Formal Logic 57 (1):141-150.
    We generalize the double negation construction of Boolean algebras in Heyting algebras to a double negation construction of the same in Visser algebras. This result allows us to generalize Glivenko’s theorem from intuitionistic propositional logic and Heyting algebras to Visser’s basic propositional logic and Visser algebras.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kolmogorov and Kuroda Translations Into Basic Predicate Logic.Mohammad Ardeshir & Wim Ruitenburg - forthcoming - Logic Journal of the IGPL.
    Kolmogorov established the principle of the double negation translation by which to embed Classical Predicate Logic |${\operatorname {CQC}}$| into Intuitionistic Predicate Logic |${\operatorname {IQC}}$|⁠. We show that the obvious generalizations to the Basic Predicate Logic of [3] and to |${\operatorname {BQC}}$| of [12], a proper subsystem of |${\operatorname {IQC}}$|⁠, go through as well. The obvious generalizations of Kuroda’s embedding are shown to be equivalent to the Kolmogorov variant. In our proofs novel nontrivial techniques are needed to overcome the absence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof complexity of substructural logics.Raheleh Jalali - 2021 - Annals of Pure and Applied Logic 172 (7):102972.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a Generalization of Heyting Algebras I.Amirhossein Akbar Tabatabai, Majid Alizadeh & Masoud Memarzadeh - forthcoming - Studia Logica:1-45.
    \(\nabla \) -algebra is a natural generalization of Heyting algebra, unifying many algebraic structures including bounded lattices, Heyting algebras, temporal Heyting algebras and the algebraic presentation of the dynamic topological systems. In a series of two papers, we will systematically study the algebro-topological properties of different varieties of \(\nabla \) -algebras. In the present paper, we start with investigating the structure of these varieties by characterizing their subdirectly irreducible and simple elements. Then, we prove the closure of these varieties under (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frontal Operators in Weak Heyting Algebras.Sergio A. Celani & Hernán J. San Martín - 2012 - Studia Logica 100 (1-2):91-114.
    In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [ 10 ]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving finite meets which also satisfies the equation $${\tau(a) \leq b \vee (b \rightarrow a)}$$, for all $${a, b \in A}$$. These operators were studied from an algebraic, logical and topological point of view by Leo Esakia (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)l -Hemi-Implicative Semilattices.José Luis Castiglioni & Hernán Javier San Martín - 2018 - Studia Logica 106 (4):675-690.
    An l-hemi-implicative semilattice is an algebra \\) such that \\) is a semilattice with a greatest element 1 and satisfies: for every \, \ implies \ and \. An l-hemi-implicative semilattice is commutative if if it satisfies that \ for every \. It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Amalgamation property for the class of basic algebras and some of its natural subclasses.Majid Alizadeh & Mohammad Ardeshir - 2006 - Archive for Mathematical Logic 45 (8):913-930.
    We study Basic algebra, the algebraic structure associated with basic propositional calculus, and some of its natural extensions. Among other things, we prove the amalgamation property for the class of Basic algebras, faithful Basic algebras and linear faithful Basic algebras. We also show that a faithful theory has the interpolation property if and only if its correspondence class of algebras has the amalgamation property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation