Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Intrinsically gs;0alpha; relations.E. Barker - 1988 - Annals of Pure and Applied Logic 39 (2):105-130.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Degrees of categoricity on a Cone via η-systems.Barbara F. Csima & Matthew Harrison-Trainor - 2017 - Journal of Symbolic Logic 82 (1):325-346.
    We investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is${\rm{\Delta }}_\alpha ^0 $-complete for someα. To prove this, we extend Montalbán’sη-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable structure, there is an ordinalαand a cone in the Turing degrees such that the exact complexity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The possible turing degree of the nonzero member in a two element degree spectrum.Valentina S. Harizanov - 1993 - Annals of Pure and Applied Logic 60 (1):1-30.
    We construct a recursive model , a recursive subset R of its domain, and a Turing degree x 0 satisfying the following condition. The nonrecursive images of R under all isomorphisms from to other recursive models are of Turing degree x and cannot be recursively enumerable.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The property “arithmetic-is-recursive” on a cone.Uri Andrews, Matthew Harrison-Trainor & Noah Schweber - 2021 - Journal of Mathematical Logic 21 (3):2150021.
    We say that a theory [Formula: see text] satisfies arithmetic-is-recursive if any [Formula: see text]-computable model of [Formula: see text] has an [Formula: see text]-computable copy; that is, the models of [Formula: see text] satisfy a sort of jump inversion. We give an example of a theory satisfying arithmetic-is-recursive non-trivially and prove that the theories satisfying arithmetic-is-recursive on a cone are exactly those theories with countably many [Formula: see text]-back-and-forth types.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • There is no classification of the decidably presentable structures.Matthew Harrison-Trainor - 2018 - Journal of Mathematical Logic 18 (2):1850010.
    A computable structure [Formula: see text] is decidable if, given a formula [Formula: see text] of elementary first-order logic, and a tuple [Formula: see text], we have a decision procedure to decide whether [Formula: see text] holds of [Formula: see text]. We show that there is no reasonable classification of the decidably presentable structures. Formally, we show that the index set of the computable structures with decidable presentations is [Formula: see text]-complete. We also show that for each [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Intrinsically< i> gs_;< sup> 0< sub> alpha; relations.E. Barker - 1988 - Annals of Pure and Applied Logic 39 (2):105-130.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Stability among r.e. quotient algebras.John Love - 1993 - Annals of Pure and Applied Logic 59 (1):55-63.
    A recursive algebra is a structure for which A is a recursive set of numbers and the Fi are uniformly recursive operations. We define an r.e. quotient algebra to be the quotient by an r.e. congruence .We say that is recursively stable among r.e. quotient algebras if, for each r.e. quotient algebra and each isomorphism from onto ′, the set {a,baA,bB and =[b]′} is r.e.We shall consider examples of recursive stability. Then, assuming that has a recursive existential diagram, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Requirement systems.Julia F. Knight - 1995 - Journal of Symbolic Logic 60 (1):222-245.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Uncountable degree spectra.Valentina S. Harizanov - 1991 - Annals of Pure and Applied Logic 54 (3):255-263.
    We consider a recursive model and an additional recursive relation R on its domain, such that there are uncountably many different images of R under isomorphisms from to some recursive model isomorphic to . We study properties of the set of Turing degrees of all these isomorphic images of R on the domain of.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Inseparability in recursive copies.Kevin J. Davey - 1994 - Annals of Pure and Applied Logic 68 (1):1-52.
    In [7] and [8], it is established that given any abstract countable structure S and a relation R on S, then as long as S has a recursive copy satisfying extra decidability conditions, R will be ∑0α on every recursive copy of S iff R is definable in S by a special type of infinitary formula, a ∑rα() formula. We generalize the typ e of constructions of these papers to produce conditions under which, given two disjoint relations R1 and R2 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the equimorphism types of linear orderings.Antonio Montalbán - 2007 - Bulletin of Symbolic Logic 13 (1):71-99.
    §1. Introduction. A linear ordering embedsinto another linear ordering if it is isomorphic to a subset of it. Two linear orderings are said to beequimorphicif they can be embedded in each other. This is an equivalence relation, and we call the equivalence classesequimorphism types. We analyze the structure of equimorphism types of linear orderings, which is partially ordered by the embeddability relation. Our analysis is mainly fromthe viewpoints of Computability Theory and Reverse Mathematics. But we also obtain results, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A general framework for priority arguments.Steffen Lempp & Manuel Lerman - 1995 - Bulletin of Symbolic Logic 1 (2):189-201.
    The degrees of unsolvability were introduced in the ground-breaking papers of Post [20] and Kleene and Post [7] as an attempt to measure theinformation contentof sets of natural numbers. Kleene and Post were interested in the relative complexity of decision problems arising naturally in mathematics; in particular, they wished to know when a solution to one decision problem contained the information necessary to solve a second decision problem. As decision problems can be coded by sets of natural numbers, this question (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hyperarithmetical relations in expansions of recursive structures.Alan D. Vlach - 1994 - Annals of Pure and Applied Logic 66 (2):163-196.
    Let be a model of a theory T. Depending on wether is decidable or recursive, and on whether T is strongly minimal or -minimal, we find conditions on which guarantee that every infinite independent subset of is not recursively enumerable. For each of the same four cases we also find conditions on which guarantee that every infinite independent subset of has Turing degree 0'. More generally, let be a recursive -structure, R a relation symbol not in , ψ a recursive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Pairs of recursive structures.C. J. Ash & J. F. Knight - 1990 - Annals of Pure and Applied Logic 46 (3):211-234.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Coding a family of sets.J. F. Knight - 1998 - Annals of Pure and Applied Logic 94 (1-3):127-142.
    In this paper, we state a metatheorem for constructions involving coding. Using the metatheorem, we obtain results on coding a family of sets into a family of relations, or into a single relation. For a concrete example, we show that the set of limit points in a recursive ordering of type ω 2 can have arbitrary 2-REA degree.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The complexity of intrinsically R.e. Subsets of existentially decidable models.John Chisholm - 1990 - Journal of Symbolic Logic 55 (3):1213-1232.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of categoricity and spectral dimension.Nikolay A. Bazhenov, Iskander Sh Kalimullin & Mars M. Yamaleev - 2018 - Journal of Symbolic Logic 83 (1):103-116.
    A Turing degreedis the degree of categoricity of a computable structure${\cal S}$ifdis the least degree capable of computing isomorphisms among arbitrary computable copies of${\cal S}$. A degreedis the strong degree of categoricity of${\cal S}$ifdis the degree of categoricity of${\cal S}$, and there are computable copies${\cal A}$and${\cal B}$of${\cal S}$such that every isomorphism from${\cal A}$onto${\cal B}$computesd. In this paper, we build a c.e. degreedand a computable rigid structure${\cal M}$such thatdis the degree of categoricity of${\cal M}$, butdis not the strong degree of categoricity (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sufficiency conditions for theories with recursive models.Kelleen R. Hurlburt - 1992 - Annals of Pure and Applied Logic 55 (3):305-320.
    Hurlburt, K.R., Sufficiency conditions for theories with recursive models, Annals of Pure and Applied Logic 55 305–320. We give conditions under which it is possible to construct recursive models for certain highly non-recursive theories. The main idea is to find an ‘α-friendly family’ of structures corresponding to the given theory and then to construct the desired recursive model by copying appropriate parts of these structures, choosing the part to copy in each structure so as to include important witnesses. All of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Pairs of computable structures.C. J. Ash & J. F. Knight - 1990 - Annals of Pure and Applied Logic 46 (3):211-234.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mixed systems.C. J. Ash & J. F. Knight - 1994 - Journal of Symbolic Logic 59 (4):1383-1399.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective model theory vs. recursive model theory.John Chisholm - 1990 - Journal of Symbolic Logic 55 (3):1168-1191.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Priority arguments via true stages.Antonio Montalbán - 2014 - Journal of Symbolic Logic 79 (4):1315-1335.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indecomposable linear orderings and hyperarithmetic analysis.Antonio Montalbán - 2006 - Journal of Mathematical Logic 6 (1):89-120.
    A statement of hyperarithmetic analysis is a sentence of second order arithmetic S such that for every Y⊆ω, the minimum ω-model containing Y of RCA0 + S is HYP, the ω-model consisting of the sets hyperarithmetic in Y. We provide an example of a mathematical theorem which is a statement of hyperarithmetic analysis. This statement, that we call INDEC, is due to Jullien [13]. To the author's knowledge, no other already published, purely mathematical statement has been found with this property (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Annual meeting of the association for symbolic logic: Notre dame, 1993.Steven Buechler - 1994 - Journal of Symbolic Logic 59 (2):696-719.
    Download  
     
    Export citation  
     
    Bookmark  
  • Labelling systems and R.E. structures.C. J. Ash - 1990 - Annals of Pure and Applied Logic 47 (2):99-119.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Categoricity in hyperarithmetical degrees.C. J. Ash - 1987 - Annals of Pure and Applied Logic 34 (1):1-14.
    Download  
     
    Export citation  
     
    Bookmark   20 citations